Article

Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings.

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Applied Optics (Impact Factor: 1.69). 03/2011; 50(9):C373-81. DOI: 10.1364/AO.50.00C373
Source: PubMed

ABSTRACT Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

0 Bookmarks
 · 
86 Views
  • Optik - International Journal for Light and Electron Optics 08/2014; 125(16):4398-4401. DOI:10.1016/j.ijleo.2014.03.015 · 0.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical studies show that a Hertzian-conical crack can be considered to be composed of double cone faces for simplicity. In the present study, the three-dimensional finite-difference time-domain method is employed to quantify the electric-field distribution within the subsurface in the presence of such a defect under normal incidence irradiation. Both impurities (inside the crack) and the chemical etching have been investigated. The results show that the maximum electric field amplitude |E|max is 9.57374 V/m when the relative dielectric constant of transparent impurity equals 8.5. And the near-field modulation will be improved if the crack is filled with the remainder polishing powders or water vapor/drops. Meanwhile, the laser-induced initial damage moves to the glass—air surface. In the etched section, the magnitude of intensification is strongly dependent on the inclination angle θ. There will be a highest modulation when θ is around π/6, and the maximum value of |E|max is 18.57314 V/m. When θ ranges from π/8 to π/4, the light intensity enhancement factor can easily be larger than 100, and the modulation follows a decreasing trend. On the other hand, the modulation curves become smooth when θ > π/4 or θ < π/8.
    Chinese Physics B 09/2012; 21(9):094213. DOI:10.1088/1674-1056/21/9/094213 · 1.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lifetime of optics in high power laser system is typically limited by both laser-initiated damage and the subsequent growth of laser-initiated damage sites. The single- and multiple-shot irradiations for HfO2 /SiO2 high-reflective coatings, deposited from hafnia and silica at 1064nm in nanosecond were investigated. It was found that when shot number increased, the possibility of damage growth increased as well. The relationship between field distribution and damage morphologies and inner structures was discussed to reveal mechanism of damage initiation. Additionally, the damage morphologies under different laser fluence and shot numbers were characterized to discuss the damage growth mechanism upon subsequent pulses. The tested results illustrated the absorbers which induced damages were random distribution, and the second highest peak of field intensity at the fourth interface was high enough to induce the micron-sized damage pits. It was found that defect density had a significant impact on the damage site whether growing or not upon subsequent laser pulses. Additionally, the growth resulted in delamination, and in turn delamination accelerated damage growth, finally the catastrophic damage happened.
    Proceedings of SPIE - The International Society for Optical Engineering 07/2013; DOI:10.1117/12.2020151 · 0.20 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Jun 6, 2014

Michael Feit