Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Applied Optics (Impact Factor: 1.78). 03/2011; 50(9):C373-81. DOI: 10.1364/AO.50.00C373
Source: PubMed


Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

Download full-text


Available from: Christopher J. Stolz, Jun 05, 2014
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.
    Applied Optics 03/2011; 50(9):C457-62. DOI:10.1364/AO.50.00C457 · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 08/2012; 370(1973):4115-29. DOI:10.1098/rsta.2011.0260 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical studies show that a Hertzian-conical crack can be considered to be composed of double cone faces for simplicity. In the present study, the three-dimensional finite-difference time-domain method is employed to quantify the electric-field distribution within the subsurface in the presence of such a defect under normal incidence irradiation. Both impurities (inside the crack) and the chemical etching have been investigated. The results show that the maximum electric field amplitude |E|max is 9.57374 V/m when the relative dielectric constant of transparent impurity equals 8.5. And the near-field modulation will be improved if the crack is filled with the remainder polishing powders or water vapor/drops. Meanwhile, the laser-induced initial damage moves to the glass—air surface. In the etched section, the magnitude of intensification is strongly dependent on the inclination angle θ. There will be a highest modulation when θ is around π/6, and the maximum value of |E|max is 18.57314 V/m. When θ ranges from π/8 to π/4, the light intensity enhancement factor can easily be larger than 100, and the modulation follows a decreasing trend. On the other hand, the modulation curves become smooth when θ > π/4 or θ < π/8.
    Chinese Physics B 09/2012; 21(9):094213. DOI:10.1088/1674-1056/21/9/094213 · 1.60 Impact Factor
Show more