Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing Responses to Therapy

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
Nature medicine (Impact Factor: 28.05). 04/2011; 17(4):500-3. DOI: 10.1038/nm.2344
Source: PubMed

ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically 6 months from diagnosis. Numerous phase 3 trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Furthermore, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast and lung cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies, along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasimesenchymal and exocrine-like, and we present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the deadliest human malignancies due to its early metastatic spread and resistance to therapy. The mechanisms regulating pancreatic cancer metastasis are so far poorly understood. Here, using both in vitro and in vivo approaches, it is demonstrated that CD44, a transmembrane glycoprotein expressed on a subset of pancreatic cancer cells, is required for the induction of epithelial-mesenchymal transition (EMT) and the activation of an invasive program in pancreatic cancer. Mechanistically, the transcription factor Snail1 (SNAI1), a regulator of the EMT program, is a downstream target of CD44 in primary pancreatic cancer cells and regulates membrane bound metalloproteinase (MMP14/MT1-MMP) expression. In turn, MT1-MMP expression is required for pancreatic cancer invasion. Thus, these data establish the CD44-Snail-MMP axis as a key regulator of the EMT program and of invasion in pancreatic cancer. This study sets the stage for CD44 and MT1-MMP as therapeutic targets in pancreatic cancer, for which small molecule or biologic inhibitors are available. Visual Overview: Mol Cancer Res; 13(1); 1-7. ©2014 AACR. ©2014 American Association for Cancer Research.
    Molecular Cancer Research 01/2015; 13(1):9-15. DOI:10.1158/1541-7786.MCR-14-0076 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na(+)/H(+) exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na+/H+ exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na+/H+ exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.
    Neoplasia 02/2015; 17(2):155. DOI:10.1016/j.neo.2014.12.003 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the industrialized world. Despite progress in the understanding of the molecular and genetic basis of this disease, the 5-year survival rate has remained low and usually does not exceed 5%. Only 20%-25% of patients present with potentially resectable disease and surgery represents the only chance for a cure. After decades of gemcitabine hegemony and limited therapeutic options, more active chemotherapies are emerging in advanced PDAC, like 5-Fluorouracil, folinic acid, irinotecan and oxaliplatin and nab-paclitaxel plus gemcitabine, that have profoundly impacted therapeutic possibilities. PDAC is considered a systemic disease because of the high rate of relapse after curative surgery in patients with resectable disease at diagnosis. Neoadjuvant strategies in resectable, borderline resectable, or locally advanced pancreatic cancer may improve outcomes. Incorporation of tissue biomarker testing and imaging techniques into preoperative strategies should allow clinicians to identify patients who may ultimately achieve curative benefit from surgery. This review summarizes current knowledge of adjuvant and neoadjuvant treatment for PDAC and discusses the rationale for moving from adjuvant to preoperative and perioperative therapeutic strategies in the current era of more active chemotherapies and personalized medicine. We also discuss the integration of good specimen collection, tissue biomarkers, and imaging tools into newly designed preoperative and perioperative strategies.

Full-text (2 Sources)

Available from
May 28, 2014