Identification and Characterization of INCB9471, an Allosteric Noncompetitive Small-Molecule Antagonist of C-C Chemokine Receptor 5 with Potent Inhibitory Activity against Monocyte Migration and HIV-1 Infection

Incyte Corporation, Wilmington, Delaware, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 04/2011; 338(1):228-39. DOI: 10.1124/jpet.111.179531
Source: PubMed

ABSTRACT C-C chemokine receptor 5 (CCR5) is a clinically proven target for inhibition of HIV-1 infection and a potential target for various inflammatory diseases. In this article, we describe 5-[(4-{(3S)-4-[(1R,2R)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]-3-methylpiperazin-1-yl}-4-methylpiperidin-1-yl)carbonyl]-4,6-dimethylpyrimidine dihydrochloride (INCB9471), a potent and specific inhibitor of human CCR5 that has been proven to be safe and efficacious in viral load reduction in phase I and II human clinical trails. INCB9471 was identified using a primary human monocyte-based radioligand competition binding assay. It potently inhibited macrophage inflammatory protein-1β-induced monocyte migration and infection of peripheral blood mononuclear cells by a panel of R5-HIV-1 strains. The results from binding and signaling studies using incremental amounts of INCB9471 demonstrated INCB9471 as a noncompetitive CCR5 inhibitor. The CCR5 residues that are essential for interaction with INCB9471 were identified by site-specific mutagenesis studies. INCB9471 rapidly associates with but slowly dissociates from CCR5. When INCB9471 was compared with three CCR5 antagonists that had been tested in clinical trials, the potency of INCB9471 in blocking CCR5 ligand binding was similar to those of 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R0-2-(methyloxy)-1-[4-(trifluoromethyl) phenyl]ethyl}-1-piperazingyl)-1-piperidinyl]carbonyl}pyrimidine (SCH-D; vicriviroc), 4-{[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxyl)methyl]-2, 5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140; aplaviroc), and 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenylpropyl)cyclohexanecarboxamide (UK427857; maraviroc). Its inhibitory activity against CCR5-mediated Ca(2+) mobilization was also similar to those of SCH-D and 873140. Further analysis suggested that INCB9471 and UK427857 may have different binding sites on CCR5. The significance of two CCR5 antagonists with different binding sites is discussed in the context of potentially overcoming drug-resistant HIV-1 strains.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
    Pharmacological reviews 01/2014; 66(1):1-79. DOI:10.1124/pr.113.007724 · 18.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
    Progress in molecular biology and translational science 01/2013; 115:1-59. DOI:10.1016/B978-0-12-394587-7.00001-4 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.
    Proceedings of the National Academy of Sciences 05/2013; DOI:10.1073/pnas.1222205110 · 9.81 Impact Factor