Identification and Characterization of INCB9471, an Allosteric Noncompetitive Small-Molecule Antagonist of C-C Chemokine Receptor 5 with Potent Inhibitory Activity against Monocyte Migration and HIV-1 Infection

Incyte Corporation, Wilmington, Delaware, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 04/2011; 338(1):228-39. DOI: 10.1124/jpet.111.179531
Source: PubMed


C-C chemokine receptor 5 (CCR5) is a clinically proven target for inhibition of HIV-1 infection and a potential target for various inflammatory diseases. In this article, we describe 5-[(4-{(3S)-4-[(1R,2R)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]-3-methylpiperazin-1-yl}-4-methylpiperidin-1-yl)carbonyl]-4,6-dimethylpyrimidine dihydrochloride (INCB9471), a potent and specific inhibitor of human CCR5 that has been proven to be safe and efficacious in viral load reduction in phase I and II human clinical trails. INCB9471 was identified using a primary human monocyte-based radioligand competition binding assay. It potently inhibited macrophage inflammatory protein-1β-induced monocyte migration and infection of peripheral blood mononuclear cells by a panel of R5-HIV-1 strains. The results from binding and signaling studies using incremental amounts of INCB9471 demonstrated INCB9471 as a noncompetitive CCR5 inhibitor. The CCR5 residues that are essential for interaction with INCB9471 were identified by site-specific mutagenesis studies. INCB9471 rapidly associates with but slowly dissociates from CCR5. When INCB9471 was compared with three CCR5 antagonists that had been tested in clinical trials, the potency of INCB9471 in blocking CCR5 ligand binding was similar to those of 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R0-2-(methyloxy)-1-[4-(trifluoromethyl) phenyl]ethyl}-1-piperazingyl)-1-piperidinyl]carbonyl}pyrimidine (SCH-D; vicriviroc), 4-{[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxyl)methyl]-2, 5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140; aplaviroc), and 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenylpropyl)cyclohexanecarboxamide (UK427857; maraviroc). Its inhibitory activity against CCR5-mediated Ca(2+) mobilization was also similar to those of SCH-D and 873140. Further analysis suggested that INCB9471 and UK427857 may have different binding sites on CCR5. The significance of two CCR5 antagonists with different binding sites is discussed in the context of potentially overcoming drug-resistant HIV-1 strains.

2 Reads
  • Source
    • "Interestingly, CCR5 is also the coreceptor for the most commonly transmitted HIV-1 strains [19]; so several pharmaceutical companies have developed specific small molecule antagonists that are being used as antiviral therapies, but are also effective in blocking CCR5 signal transduction. These include maraviroc (MVC) [20], [21], vicribiroc [22], TBR-652 [23], and INCB9471 [24]. Another inhibitor, aplaviroc, was discontinued due to excessive hepatotoxicity during clinical trials [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic liver disease may result in a sequential progression through fibrosis, cirrhosis and lead, eventually, to hepatocellular carcinoma (HCC). Hepatic stellate cells (HSC) seem to be responsible for the fibrogenic response through the activation of an autocrine loop involving the chemokine receptor, CCR5. However, the role of CCR5 in HCC remains poorly understood. Since this receptor is also one of the main ports of entry for the human immunodeficiency virus (HIV), several CCR5 inhibitors are being used in the clinic to reduce viral load. We used one of these inhibitors, maraviroc (MVC), in a mouse model of diet-induced HCC to investigate whether this intervention would reduce disease progression. Animals treated with MVC on top of a normal control diet did not present any evidence of toxicity or any morphological change when compared with non-treated mice. Animals treated with MVC presented higher survival, less liver fibrosis, lower levels of liver injury markers and chemokines, less apoptosis, lower proliferation index, and lower tumor burden than their counterparts receiving only the hepatotoxic diet. In addition, MVC inhibits HSC activation markers such as phosphorylation of p38 and ERK, and increases hepatocyte survival. This study suggests that MVC, a well tolerated and clinically characterized drug, may be used as a preventative treatment for HCC. Clinical studies are needed to demonstrate the efficacy of this drug, or other CCR5 inhibitors, in patients with high risk of developing HCC.
    PLoS ONE 04/2013; 8(1):e53992. DOI:10.1371/journal.pone.0053992 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of human immunodeficiency virus (HIV) as a causative agent of acquired immune deficiency syndrome (AIDS) various strategies were employed to counter its devastating actions. One such concept relies on the prevention of HIV entry into host's "competent" cells by means of compounds known as entry inhibitors. HIV entry inhibitors comprise a group of immensely diverse compounds ranging from proteins/antibodies to small organic molecules and capable of targeting various stages of viral entry. Although already in clinical use, this approach to HIV therapy is still being investigated to produce new promising antiviral compounds. Here, we review the latest advances in this area.
    Current pharmaceutical design 10/2012; 19(10). DOI:10.2174/1381612811319100003 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeting of chemokine receptors by small molecules has been widely pursued. This review highlights recent illustrative disclosures of clinical relevance that could further shape our appreciation, and add to our understanding, of the therapeutic value of chemokine receptor targeting. Disclosures include new structures, announcements of new trials, or results of conducted trials (including setbacks). This review shows how most of the discussed disclosures seem to be concentrated on selected receptors, for example, CCR1, CCR2, CCR5, CCR9, CXCR2 and CXCR4, with a wide variety of associated ligand chemotypes and diseases. With two approved antagonist drugs and several in Phase III trials, as well as new antagonist chemotypes entering the pipeline, the chemokine receptor field proves dynamic and upcoming results will further fuel the field.
    Drug Discovery Today Technologies 12/2012; 9(4):e229–e236. DOI:10.1016/j.ddtec.2012.03.004
Show more