Article

Gypenoside attenuates white matter lesions induced by chronic cerebral hypoperfusion in rats.

Institute for Functional Neurosurgery P.L.A and Institute for Functional Brain Disorders, Tang Du Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 03/2011; 99(1):42-51. DOI: 10.1016/j.pbb.2011.03.019
Source: PubMed

ABSTRACT Cerebral white matter lesions (WMLs) are frequently observed in vascular dementia and Alzheimer's disease and are believed to be responsible for cognitive dysfunction. The cerebral WMLs are most likely caused by chronic cerebral hypoperfusion and can be experimentally induced by permanent bilateral common carotid artery occlusion (BCCAO) in rats. Previous studies found the involvement of oxidative stress and astrocytic activation in the cerebral WMLs of BCCAO rats. Gypenoside (GP), a pure component extracted from the Gyrostemma pentaphyllum Makino, a widely reputed medicinal plants in China, has been reported to have some neuroprotective effects via anti-oxidative stress and anti-inflammatory mechanisms. In the present study, we investigated the protective effect of GP against cerebral WMLs and the underlying mechanisms for its inhibition of cognitive decline in BCCAO rats. Adult male Sprague-Dawley rats were orally administered daily doses of 200 and 400mg/kg GP for 33 days after BCCAO, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were also assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine, respectively. Activated astrocytes were also assessed by immunohistochemical staining and Western blotting with GFAP antibodies. The morphological changes were stained with Klüver-Barrera. Rats receiving 400mg/kg GP per day performed significantly better in tests for spatial learning and memory than saline-treated rats. GP 400mg/kg per day were found to markedly scavenge oxygen free radicals, enhance antioxidant abilities, decrease lipid peroxide production and oxidative DNA damage, and inhibit the astrocytic activation in corpus callosum and optic tract in BCCAO rats. However, GP 200mg/kg per day had no significant effects. GP may have therapeutic potential for treating dementia induced by chronic cerebral hypoperfusion and further evaluation is warranted.

0 Bookmarks
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study ligated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphthalide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby improving cerebral neuronal injury and cognitive deficits.
    Neural Regeneration Research 04/2014; 9(7):719-26. · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gynostemma pentaphyllum is a traditional Chinese medicine that has previously been used for the treatment of chronic inflammation, hyperlipidemia and liver disease. Gypenoside (GP), the predominant component of Gynostemma pentaphyllum, exhibits a therapeutic effect on chronic hepatic injury, fibrosis and fatty liver disease via its anti-inflammatory and anti-oxidant activity. However, the effect of GP on ischemia/reperfusion (I/R)-induced hepatic injury has, to the best of our knowledge, not previously been investigated. In the present study, a hepatic I/R-injury model was successfully established using C57BL/6 mice. In the treatment group, 50 mg/kg GP was administered orally 1 h prior to ischemia. Following hepatic I/R, the levels of hepatic lipid peroxidation and serum alanine aminotransferase increased, while the ratio of hepatic glutathione (GSH):oxidized GSH was reduced, which was effectively attenuated by pretreatment with GP. Furthermore, an increased protein expression of heme oxygenase-1 in the liver tissues of the I/R mice was attenuated by the administration of GP. In addition, the present study indicated that treatment with GP suppressed the I/R-induced increase in the pro-apoptotic protein levels of Bax and cytochrome c and the activity of caspase-3/8, as well as the I/R-induced decrease in the levels of anti-apoptotic protein Bcl-2. In conclusion, the present study indicated that GP effectively protected against I/R-induced hepatic injury via its anti-oxidative and anti-apoptotic bioactivity.
    Experimental and therapeutic medicine 05/2014; 7(5):1388-1392. · 0.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal alcohol spectrum disorder (FASD) can cause severe mental retardation in children who are prenatally exposed to ethanol. The effects of prenatal and early postnatal ethanol exposure on adult hippocampal neurogenesis have been investigated; however, the effects of prenatal ethanol exposure on the subventricular zone (SVZ) have not. Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The effects of GPs on neural stem cells (NSCs) in the FASD model are unknown. Here, we test the effect of prenatal ethanol exposure on the neonatal SVZ, and the protection potential of GPs on NSCs in FASD rats. Our results show that prenatal ethanol exposure can suppress the cell proliferation and differentiation of neural stem cells in the neonatal SVZ and that GPs (400 mg/kg/day) can significantly increase the cell proliferation and differentiation of neural stem cells inhibited by ethanol. Our data indicate that GPs have neuroprotective effects on the NSCs and can enhance the neurogenesis inhibited by ethanol within the SVZ of neonatal rats. These findings provide new evidence for a potential therapy involving GPs for the treatment of FASD.
    International Journal of Molecular Sciences 12/2014; 15(12):21967-79. · 2.46 Impact Factor