Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment

Laboratory of Neurogenesis and Cell Therapy, Lund University Hospital, SE-221 84 Lund, Sweden.
Experimental Neurology (Impact Factor: 4.7). 03/2011; 229(2):484-93. DOI: 10.1016/j.expneurol.2011.03.019
Source: PubMed

ABSTRACT We have previously shown that following severe brain insults, chronic inflammation induced by lipopolysaccharide (LPS) injection, and status epilepticus, new dentate granule cells exhibit changes of excitatory and inhibitory synaptic drive indicating that they may mitigate the abnormal brain function. Major inflammatory changes in the environment encountering the new neurons were a common feature of these insults. Here, we have asked how the morphology and electrophysiology of new neurons are affected by a comparably mild pathology: repetitive seizures causing hyperexcitability but not inflammation. Rats were subjected to rapid kindling, i.e., 40 rapidly recurring, electrically-induced seizures, and subsequently exposed to stimulus-evoked seizures twice weekly. New granule cells were labeled 1 week after the initial insult with a retroviral vector encoding green fluorescent protein. After 6-8 weeks, new neurons were analyzed using confocal microscopy and whole-cell patch-clamp recordings. The new neurons exposed to the pathological environment exhibited only subtle changes in their location, orientation, dendritic arborizations, and spine morphology. In contrast to the more severe insults, the new neurons exposed to rapid kindling and stimulus-evoked seizures exhibited enhanced afferent excitatory synaptic drive which could suggest that the cells that had developed in this environment contributed to hyperexcitability. However, the new neurons showed concomitant reduction of intrinsic excitability which may counteract the propagation of this excitability to the target cells. This study provides further evidence that following insults to the adult brain, the pattern of synaptic alterations at afferent inputs to newly generated neurons is dependent on the characteristics of the pathological environment.

Download full-text


Available from: James Wood, Jul 22, 2015
46 Reads
  • Source
    • "Acute microglial activation following epileptic seizures is detrimental to the survival of newly formed neurons (Ekdahl et al., 2003). Both seizure-induced pathology and lipopolysaccharide-induced brain inflammation alter the functional properties and the expression of synaptic proteins, including adhesion molecules and scaffolding proteins, of adult born hippocampal neurons (Jakubs et al., 2006; Wood et al., 2011; Jackson et al., 2012; Chugh et al., 2013). In addition, it has been speculated that microglia may regulate synaptic pruning and transmission in adult born neurons (Ekdahl, 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Temporal lobe seizures lead to an acute inflammatory response in the brain primarily characterized by activation of parenchymal microglial cells. Simultaneously, degeneration of pyramidal cells and interneurons is evident together with a seizure-induced increase in the production of new neurons within the dentate gyrus of the hippocampus. We have previously shown a negative correlation between the acute seizure-induced inflammation and the survival of newborn hippocampal neurons. Here, we aimed to evaluate the role of the fractalkine-CX3CR1 pathway for these acute events. Fractalkine is a chemokine expressed by both neurons and glia, while its receptor, CX3CR1 is primarily expressed on microglia. Electrically-induced partial status epilepticus (SE) was induced in adult rats through stereotaxically implanted electrodes in the hippocampus. Recombinant rat fractalkine or CX3CR1 antibody was infused intraventricularly during one week post-SE. A significant increase in the expression of CX3CR1, but not fractalkine, was observed in the dentate gyrus at one week. CX3CR1 antibody treatment resulted in a reduction in microglial activation, neurodegeneration, as well as neuroblast production. In contrast, fractalkine treatment had only minor effects. This study provides evidence for a role of the fractalkine-CX3CR1 signaling pathway in seizure-induced microglial activation and suggests that neuroblast production following seizures may partly occur as a result of microglial activation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Neurobiology of Disease 11/2014; 74. DOI:10.1016/j.nbd.2014.11.009 · 5.08 Impact Factor
  • Source
    • "Enhanced granule cell neurogenesis was temporally related to SE [54]–[55] but also promoted by repeated spontaneous brief seizures in absence of SE [56]. Newly generated neurons not only influenced the reorganization of hippocampal network [55] but they were also deeply affected by the pathologic conditions created by SE or repeated seizures [57]–[59]. VGLUT1 and VGAT staining demonstrated either increased GABAergic and glutamatergic input in the hippocampus after pilocarpine SE [60], or reduced GABA and increased glutamate synaptic input in the neocortex of the irradiated model of cortical dysplasia [25]. Finally, dendritic damage and reshaping and spine loss shortly following SE and seizures was demonstrated in different SE models of experimental epilepsy [22], [61]–[63]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
    PLoS ONE 02/2014; 9(2):e89898. DOI:10.1371/journal.pone.0089898 · 3.23 Impact Factor
  • Source
    • "However, NL-2 cluster density is unaltered on 6 week-old hippocampal neurons in IL-1R1 knockout mice (Chugh D, Jackson J, Chapman K, Ekdahl CT, unpublished observation ), though, changes may still be present during brain inflammation. The current study, together with our previous reports on structural and functional integration of adult-born hippocampal neurons in pathological environments (Jackson et al., 2012; Jakubs et al., 2006; Jakubs et al., 2008; Wood et al., 2011 "
    [Show abstract] [Hide abstract]
    ABSTRACT: An inflammatory reaction in the brain is primarily characterized by activation of parenchymal microglial cells. Microglia regulate several aspects of adult neurogenesis, i.e. the continuous production of new neurons in the adult brain. Hippocampal neurogenesis is thought to be important for memory formation, but its role in brain diseases is not clear. We have previously shown that brain inflammation modulates the functional integration of newly formed hippocampal neurons. Here, we explored whether there is a defined time period during synaptic development when new neurons are susceptible to brain inflammation. Newly formed hippocampal neurons, born in an intact environment in the adult mouse brain, were exposed to lipopolysaccharide (LPS)-induced inflammation during either early or late phases of excitatory and inhibitory synaptogenesis. We used intra-hippocampal injections of GFP-retroviral vector (RV-GFP) to label the new neurons and ipsilateral LPS injection at either 1 or 4weeks post-RV-GFP injection. A single intra-hippocampal LPS injection induced an inflammatory response for at least 3weeks, including an acute transient pro-inflammatory cytokine release as well as a sub-acute and sustained change in microglial morphology. The general cytoarchitecture of the hippocampal dentate gyrus, including granule cell layer (GCL) volume, and astrocytic glial fibrillary acidic protein expression were not different compared to vehicle controls, and no Fluoro-Jade-positive cell death was observed. New neurons encountering this inflammatory environment exhibited no changes in their gross morphology. However, when inflammation occurred during early stages of synapse formation, we found a region-specific increase in the number of thin dendritic spines and post-synaptic density-95 (PSD-95) cluster formation on spines, suggesting an enhanced excitatory synaptic connectivity in the newborn neurons. No changes were observed in the expression of N-cadherin, an adhesion molecule primarily associated with excitatory synapses. At the inhibitory synapses, alterations due to inflammation were also evident during early but not later stages of synaptic development. Gephyrin, an inhibitory scaffolding protein, was down-regulated in the somatic region, while the adhesion molecules neuroligin-2 (NL-2) and neurofascin were increased in the somatic region and/or on the dendrites. The GABAA receptor-α2 subunit (GABAAR-α2) was increased, while pre/peri-synaptic GABA clustering remained unaltered. The disproportional changes in post-synaptic adhesion molecules and GABAA receptor compared to scaffolding protein expression at the inhibitory synapses during brain inflammation are likely to cause an imbalance in GABAergic transmission. These changes were specific for the newborn neurons and were not observed when estimating the overall expression of gephyrin, NL-2, and GABAAR-α2 in the hippocampal GCL. The expression of interleukin-1-type 1 receptor (IL-1R1) on preferentially the somatic region of new neurons, often in close apposition to NL-2 clusters, may indicate a direct interaction between brain inflammation and synaptic proteins on newborn neurons. In summary, this study provides evidence that adult-born hippocampal neurons alter their inhibitory and excitatory synaptic integration when encountering an LPS-induced brain inflammation during the initial stages of synapse formation. Changes at this critical developmental period are likely to interfere with the physiological functions of new neurons within the hippocampus.
    Experimental Neurology 09/2013; 250. DOI:10.1016/j.expneurol.2013.09.005 · 4.70 Impact Factor
Show more