Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment.

Laboratory of Neurogenesis and Cell Therapy, Lund University Hospital, SE-221 84 Lund, Sweden.
Experimental Neurology (Impact Factor: 4.65). 03/2011; 229(2):484-93. DOI: 10.1016/j.expneurol.2011.03.019
Source: PubMed

ABSTRACT We have previously shown that following severe brain insults, chronic inflammation induced by lipopolysaccharide (LPS) injection, and status epilepticus, new dentate granule cells exhibit changes of excitatory and inhibitory synaptic drive indicating that they may mitigate the abnormal brain function. Major inflammatory changes in the environment encountering the new neurons were a common feature of these insults. Here, we have asked how the morphology and electrophysiology of new neurons are affected by a comparably mild pathology: repetitive seizures causing hyperexcitability but not inflammation. Rats were subjected to rapid kindling, i.e., 40 rapidly recurring, electrically-induced seizures, and subsequently exposed to stimulus-evoked seizures twice weekly. New granule cells were labeled 1 week after the initial insult with a retroviral vector encoding green fluorescent protein. After 6-8 weeks, new neurons were analyzed using confocal microscopy and whole-cell patch-clamp recordings. The new neurons exposed to the pathological environment exhibited only subtle changes in their location, orientation, dendritic arborizations, and spine morphology. In contrast to the more severe insults, the new neurons exposed to rapid kindling and stimulus-evoked seizures exhibited enhanced afferent excitatory synaptic drive which could suggest that the cells that had developed in this environment contributed to hyperexcitability. However, the new neurons showed concomitant reduction of intrinsic excitability which may counteract the propagation of this excitability to the target cells. This study provides further evidence that following insults to the adult brain, the pattern of synaptic alterations at afferent inputs to newly generated neurons is dependent on the characteristics of the pathological environment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic or intracerebral delivery of neural stem and progenitor cells (NSPCs) and activation of endogenous NSPCs hold much promise as potential treatments for diseases in the human CNS. Recent studies have shed new light on the interaction between the NSPCs and cells belonging to the innate and adaptive arms of the immune system. According to these studies, the immune cells can be both beneficial and detrimental for cell genesis from grafted and endogenous NSPCs in the CNS, and the NSPCs exert their beneficial effects not only by cell replacement but also by immunomodulation and trophic support. The cross-talk between immune cells and NSPCs and their progeny seems to determine both the efficacy of endogenous regenerative responses and the mechanism of action as well as the fate and functional integration of grafted NSPCs. Better understanding of the dialog between NSPCs and innate and adaptive immune cells is crucial for further development of effective strategies for CNS repair.
    Nature Neuroscience 01/2012; 15(8):1078-87. · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.
    Neurobiology of aging 08/2012; · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine's scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either one day or one month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident one day after the last seizure, the magnitude of which had diminished by one month. Further, there was an increase in the thickness of the granule cell layer one day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density and axon proximal area, but do not produce striking rearrangements of granule cell structure. © 2013 Wiley Periodicals, Inc.
    Hippocampus 07/2013; · 5.49 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014