Article

Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts

Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, TX, USA.
Archives of oral biology (Impact Factor: 1.88). 03/2011; 56(8):812-22. DOI: 10.1016/j.archoralbio.2011.01.001
Source: PubMed

ABSTRACT Antioxidants (AOs) are the first line of defence against free radical damage and are critical for maintaining optimum health and well being. The need for AOs becomes even more critical with increased exposure to free radicals generated by pollution, cigarette smoke, drugs, illness, stress and exercise. Antioxidant supplementation is an excellent way of improving free radical protection. The aim of this study was to provide cytotoxicity, proliferation and migration data on the in vitro effects of bioactive AO mixtures on human oral fibroblasts.
Human oral fibroblasts were obtained from human gingival (HGF) and periodontal (HPDL) tissues. Each of these oral fibroblasts was cultured separately in three concentrations of the bioactive pure polyphenol and turmeric derivative mixtures; resveratrol (R), ferulic acid (F), phloretin (P) and tetrahydrocurcuminoids (T); [(RFT), (PFR), and (PFT)]. Cell viability, proliferation, morphology and migratory behaviour were analysed in vitro using high throughput in vitro 96 well plate wound assay.
RFT decreased (10(-3)M) and increased (10(-5)M) cell number in HGF cells. Three concentrations (10(-3), 10(-4), and 10(-5)M) of PFR and PFT increased DNA synthesis in HGF cells. PFT promoted cell migration but PFR and RFT had no significant change in HGF wound healing rates in a 96 well plate assay monolayer wound. In the HPDL cells, the 10(-4)M concentration of both RFT and PFT increased cell number at 72 h and 96 h whereas the lower concentration 10(-5)M of RFT significantly stimulated cell number at 96 h. PFR (10(-3)M and 10(-5)M) and PFT (10(-3)M) increased DNA synthesis after 48 h treatment in HPDL cells.
High and low concentrations (10(-3)-10(-5)M) of these AOs (RFT, PFR) may have beneficial effects on functional mechanisms regulating fibroblast migration and proliferation during gingival healing or periodontal repair.

Full-text

Available from: Kathy K H Svoboda, Mar 27, 2014
2 Followers
 · 
255 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.
    Stem Cell Research 11/2013; 12(2):354-363. DOI:10.1016/j.scr.2013.11.002 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeThe aim of this study was to determine the effects of nutritional supplements on periodontal health and tooth mobility after surgery.MethodsPatients were randomly assigned to an intervention group who consumed nutritional supplement drinks for 8 weeks, while the placebo group did not receive any such supplements. The gingival index (GI) and tooth mobility were measured at baseline and at 1, 4, and 8 weeks. In addition, the oral health impact profile-14 and anthropometric measurements along with loss of appetite and dietary intake were assessed at baseline and 8 weeks.ResultsAt 1 week, GI values were reduced in the intervention group (P<0.05), and tooth mobility had increased, but to a lesser extent in the intervention group (P<0.05). At 8 weeks, the intakes of protein, vitamins A and B1, and niacin were increased in the intervention group.ConclusionsThese results demonstrate that nutritional supplementation improves early periodontal healing after surgery.Graphical Abstract
    Journal of periodontal & implant science 06/2014; 44(3):109-17. DOI:10.5051/jpis.2014.44.3.109
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small organic phenolic compounds from natural sources have attracted increasing attention due to their potential to ameliorate the serious consequences of acute and chronic traumata of the mammalian nervous system. In this contribution, it is reported that phenols from the knot zones of Siberian larch (Larix sibirica) wood, namely, the antioxidant flavonoid (+)-dihydroquercetin (1) and the lignans (-)-secoisolariciresinol (2) and (+)-isolariciresinol (3), affect migration and outgrowth of neurites/processes from cultured neurons and glial cells of embryonic and early postnatal mice. Compounds 1-3, which were available in preparative amounts, enhanced neurite outgrowth from cerebellar granule neurons, dorsal root ganglion neurons, and motoneurons, as well as process formation of Schwann cells in a dose-dependent manner in the low nanomolar range. Migration of cultured astrocytes was inhibited by 1-3, and migration of neurons out of cerebellar explants was enhanced by 1. These observations provide evidence for the neuroactive features of these phenolic compounds in enhancing the beneficial properties of neurons and reducing the inhibitory properties of activated astrocytes in an in vitro setting and encourage the further investigation of these effects in vivo, in animal models of acute and chronic neurological diseases.
    Journal of Natural Products 06/2014; 77(7). DOI:10.1021/np4009738 · 3.95 Impact Factor