Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts

Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, TX, USA.
Archives of oral biology (Impact Factor: 1.88). 03/2011; 56(8):812-22. DOI: 10.1016/j.archoralbio.2011.01.001
Source: PubMed

ABSTRACT Antioxidants (AOs) are the first line of defence against free radical damage and are critical for maintaining optimum health and well being. The need for AOs becomes even more critical with increased exposure to free radicals generated by pollution, cigarette smoke, drugs, illness, stress and exercise. Antioxidant supplementation is an excellent way of improving free radical protection. The aim of this study was to provide cytotoxicity, proliferation and migration data on the in vitro effects of bioactive AO mixtures on human oral fibroblasts.
Human oral fibroblasts were obtained from human gingival (HGF) and periodontal (HPDL) tissues. Each of these oral fibroblasts was cultured separately in three concentrations of the bioactive pure polyphenol and turmeric derivative mixtures; resveratrol (R), ferulic acid (F), phloretin (P) and tetrahydrocurcuminoids (T); [(RFT), (PFR), and (PFT)]. Cell viability, proliferation, morphology and migratory behaviour were analysed in vitro using high throughput in vitro 96 well plate wound assay.
RFT decreased (10(-3)M) and increased (10(-5)M) cell number in HGF cells. Three concentrations (10(-3), 10(-4), and 10(-5)M) of PFR and PFT increased DNA synthesis in HGF cells. PFT promoted cell migration but PFR and RFT had no significant change in HGF wound healing rates in a 96 well plate assay monolayer wound. In the HPDL cells, the 10(-4)M concentration of both RFT and PFT increased cell number at 72 h and 96 h whereas the lower concentration 10(-5)M of RFT significantly stimulated cell number at 96 h. PFR (10(-3)M and 10(-5)M) and PFT (10(-3)M) increased DNA synthesis after 48 h treatment in HPDL cells.
High and low concentrations (10(-3)-10(-5)M) of these AOs (RFT, PFR) may have beneficial effects on functional mechanisms regulating fibroblast migration and proliferation during gingival healing or periodontal repair.

Download full-text


Available from: Kathy K H Svoboda, Mar 27, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike skin, oral gingiva do not scar in response to injury. The basis of this difference is likely to be revealed by comparing the responses of dermal and gingival fibroblasts to fibrogenic stimuli. Previously, we showed that, compared to dermal fibroblasts, gingival fibroblasts are less responsive to the potent pro-fibrotic cytokine TGFβ, due to a reduced production of endothelin-1 (ET-1). In this report, we show that, compared to dermal fibroblasts, human gingival fibroblasts show reduced expression of pro-adhesive mRNAs and proteins including integrins α2 and α4 and focal adhesion kinase (FAK). Consistent with these observations, gingival fibroblasts are less able to adhere to and spread on both fibronectin and type I collagen. Moreover, the enhanced production of ET-1 mRNA and protein in dermal fibroblasts is reduced by the FAK/src inhibitor PP2. Given our previous observations suggesting that fibrotic fibroblasts display elevated adhesive properties, our data suggest that scarring potential may be based, at least in part, on differences in adhesive properties among fibroblasts resident in connective tissue. Controlling adhesive properties may be of benefit in controlling scarring in response to tissue injury.
    PLoS ONE 11/2011; 6(11):e27097. DOI:10.1371/journal.pone.0027097 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Oxidative damage to soft oral tissues may result from exposure to the chemicals or biochemicals found in teeth-whitening products, dental restorations, tobacco, and alcohol. Our working hypothesis is that oral tissues are susceptible to the toxic effects of stressors such as hydrogen peroxide (H(2)O(2)), ethanol (EtOH) and nicotine (Nic), which decrease cell viability/DNA synthesis and elevate reactive oxygen species (ROS). In this study, we investigated specific polyphenols and turmeric derivative antioxidants (AO) in combinations that counteracted the effects of these stressors on cultured oral fibroblast proliferation and ROS production. METHODS: Oral fibroblasts were exposed to stressors for 30min and then treated with 10(-5)M of bioactive AO mixtures [resveratrol, ferulic acid and tetrahydrocurcuminoid (RFT), phloretin, ferulic acid and resveratrol (PFR), phloretin, ferulic acid and tetrahydrocurcuminoid (PFT)] for 24h. Cell viability and DNA synthesis were monitored using incorporated 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulphophenyl]-2H-tetrazolium (MTS) and 5-bromo-2-deoxyuridine (BrdU) assays, respectively. Total ROS was measured with dichlorodihydrofluorescein diacetate (H(2)DCFDA). RESULTS: Incubation of oral fibroblasts in the stressors for 30min resulted in a dose-dependent decrease of DNA synthesis and number of viable cells, and an increased total ROS activity. AO treatment counteracted the insults by restoring DNA synthesis levels and cell viability, and decreasing the total ROS activity. CONCLUSION: The AO combinations of RFT, PFR and PFT protected the oral fibroblasts from the detrimental effects of H(2)O(2), EtOH and Nic by decreasing total ROS and increasing cell viability and DNA synthesis.
    Archives of oral biology 05/2012; 57(12). DOI:10.1016/j.archoralbio.2012.04.021 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present investigation, we examined the effect of Hyuganatsu (Citrus tamurana) extract (HE) on skin fibroblast (TIG-119) proliferation and migration during in vitro wound healing. HE selectively inhibited proliferation of TIG-119 cells at higher concentration (>1.0 mg/mL); at lower concentrations (0.1, 0.25, 0.5, and 0.75 mg/mL), it exhibited linear and time-dependent cell proliferation. In vitro scratch wound healing studies showed that the HE also accelerated the migration of cells towards the wounded region. Cytometric analysis demonstrated that HE extract did not alter G1/0 and S phases of cell cycle in any concentration studied; however, G2/M phases of cell cycle were significantly (P < 0.05) accelerated at 0.75 mg/mL dose. RT-PCR and Western blotting analysis indicated that HE markedly overexpressed levels of Rac-1, Rho-A, and Cdc-42 mRNA and the respective proteins. Cyclin-dependent kinases (Cdk-1 and -2) gene expression activity was significantly (P < 0.05) increased, but protein content decreased during treatment with HE. The induction of Cdk-1 and -2 by HE was abolished by inhibitors, transcription (DRB), and translation (CHX), implying transcriptional regulation that required de novo protein synthesis.
    05/2013; 2013:963457. DOI:10.1155/2013/963457
Show more