Article

Bcl-x(L) Retrotranslocates Bax from the Mitochondria into the Cytosol

Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA.
Cell (Impact Factor: 31.96). 04/2011; 145(1):104-16. DOI: 10.1016/j.cell.2011.02.034
Source: PubMed

ABSTRACT The Bcl-2 family member Bax translocates from the cytosol to mitochondria, where it oligomerizes and permeabilizes the mitochondrial outer membrane to promote apoptosis. Bax activity is counteracted by prosurvival Bcl-2 proteins, but how they inhibit Bax remains controversial because they neither colocalize nor form stable complexes with Bax. We constrained Bax in its native cytosolic conformation within cells using intramolecular disulfide tethers. Bax tethers disrupt interaction with Bcl-x(L) in detergents and cell-free MOMP activity but unexpectedly induce Bax accumulation on mitochondria. Fluorescence loss in photobleaching (FLIP) reveals constant retrotranslocation of WT Bax, but not tethered Bax, from the mitochondria into the cytoplasm of healthy cells. Bax retrotranslocation depends on prosurvival Bcl-2 family proteins, and inhibition of retrotranslocation correlates with Bax accumulation on the mitochondria. We propose that Bcl-x(L) inhibits and maintains Bax in the cytosol by constant retrotranslocation of mitochondrial Bax.

0 Bookmarks
 · 
254 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can"sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This"sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host. Copyright © 2015. Published by Elsevier B.V.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interactions (PPIs) are key to understanding diverse cellular processes and disease mechanisms. However, current PPI databases only provide low-resolution knowledge of PPIs, in the sense that "proteins" of currently known PPIs generally refer to "genes." It is known that alternative splicing often impacts PPI by either directly affecting protein interacting domains, or by indirectly impacting other domains, which, in turn, impacts the PPI binding. Thus, proteins translated from different isoforms of the same gene can have different interaction partners. Due to the limitations of current experimental capacities, little data is available for PPIs at the resolution of isoforms, although such high-resolution data is crucial to map pathways and to understand protein functions. In fact, alternative splicing can often change the internal structure of a pathway by rearranging specific PPIs. To fill the gap, we systematically predicted genome-wide isoform-isoform interactions (IIIs) using RNA-seq datasets, domain-domain interaction and PPIs. Furthermore, we constructed an III database (IIIDB) that is a resource for studying PPIs at isoform resolution. To discover functional modules in the III network, we performed III network clustering, and then obtained 1025 isoform modules. To evaluate the module functionality, we performed the GO/pathway enrichment analysis for each isoform module. The IIIDB provides predictions of human protein-protein interactions at the high resolution of transcript isoforms that can facilitate detailed understanding of protein functions and biological pathways. The web interface allows users to search for IIIs or III network modules. The IIIDB is freely available at http://syslab.nchu.edu.tw/IIIDB.

Full-text (2 Sources)

Download
84 Downloads
Available from
May 26, 2014