Dose response of bone-targeted enzyme replacement of murine hypophosphatasia

Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
Bone (Impact Factor: 3.97). 03/2011; 49(2):250-6. DOI: 10.1016/j.bone.2011.03.770
Source: PubMed


Hypophosphatasia (HPP) features rickets or osteomalacia from tissue-nonspecific alkaline phosphatase (TNSALP) deficiency due to deactivating mutations within the ALPL gene. Enzyme replacement therapy with a bone-targeted, recombinant TNSALP (sALP-FcD(10), renamed ENB-0040) prevents manifestations of HPP when initiated at birth in TNSALP knockout (Akp2(-/-)) mice. Here, we evaluated the dose-response relationship of ENB-0040 to various phenotypic traits of Akp2(-/-) mice receiving daily subcutaneous (SC) injections of ENB-0040 from birth at 0.5, 2.0, or 8.2mg/kg for 43days. Radiographs, μCT, and histomorphometric analyses documented better bone mineralization with increasing doses of ENB-0040. We found a clear, positive correlation between ENB-0040 dose and prevention of mineralization defects of the feet, rib cage, lower limbs, and jaw bones. According to a dose-response model, the ED(80) (the dose that prevents bone defects in 80% of mice) was 3.2, 2.8 and 2.9mg/kg/day for these sites, respectively. Long bones seemed to respond to lower daily doses of ENB-0040. There was also a positive relationship between ENB-0040 dose and survival. Median survival, body weight, and bone length all improved with increasing doses of ENB-0040. Urinary PP(i) concentrations remained elevated in all treatment groups, indicating that while this parameter is a good biochemical marker for diagnosing HPP in patients, it may not be a good follow up marker for evaluating response to treatment when administering bone-targeted TNSALP to mice. These dose-response relationships strongly support the pharmacological efficacy of ENB-0040 for HPP, and provide the experimental basis for the therapeutic range of ENB-0040 chosen for clinical trials.

Download full-text


Available from: Esther Cory, Jul 11, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypophosphatasia (HPP), caused by mutations in the gene ALPL encoding tissue-nonspecific alkaline phosphatase (TNALP), is an inherited systemic skeletal disease characterized by mineralization defects of bones and teeth. The clinical severity of HPP varies widely, from a lethal perinatal form to mild odontohypophosphatasia showing only dental manifestations. HPP model mice (Akp2(-/-)) phenotypically mimic the severe infantile form of human HPP; they appear normal at birth but die by 2 weeks of age because of growth failure, hypomineralization, and epileptic seizures. In the present study, we investigated the feasibility of fetal gene therapy using the lethal HPP model mice. On day 15 of gestation, the fetuses of HPP model mice underwent transuterine intraperitoneal injection of adeno-associated virus serotype 9 (AAV9) expressing bone-targeted TNALP. Treated and delivered mice showed normal weight gain and seizure-free survival for at least 8 weeks. Vector sequence was detected in systemic organs including bone at 14 days of age. ALP activities in plasma and bone were consistently high. Enhanced mineralization was demonstrated on X-ray images of the chest and forepaw. Our data clearly demonstrate that systemic injection of AAV9 in utero is an effective strategy for the treatment of lethal HPP mice. Fetal gene therapy may be an important choice after prenatal diagnosis of life-threatening HPP.
    Human gene therapy 12/2011; 23(4):399-406. DOI:10.1089/hum.2011.148 · 3.76 Impact Factor
  • Source

    Calcified Tissue International 01/2012; 90(3):250. DOI:10.1007/s00223-011-9562-5 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypophosphatasia results from mutations in the gene for the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP). Inorganic pyrophosphate accumulates extracellularly, leading to rickets or osteomalacia. Severely affected babies often die from respiratory insufficiency due to progressive chest deformity or have persistent bone disease. There is no approved medical therapy. ENB-0040 is a bone-targeted, recombinant human TNSALP that prevents the manifestations of hypophosphatasia in Tnsalp knockout mice. We enrolled infants and young children with life-threatening or debilitating perinatal or infantile hypophosphatasia in a multinational, open-label study of treatment with ENB-0040. The primary objective was the healing of rickets, as assessed by means of radiographic scales. Motor and cognitive development, respiratory function, and safety were evaluated, as well as the pharmacokinetics and pharmacodynamics of ENB-0040. Of the 11 patients recruited, 10 completed 6 months of therapy; 9 completed 1 year. Healing of rickets at 6 months in 9 patients was accompanied by improvement in developmental milestones and pulmonary function. Elevated plasma levels of the TNSALP substrates inorganic pyrophosphate and pyridoxal 5'-phosphate diminished. Increases in serum parathyroid hormone accompanied skeletal healing, often necessitating dietary calcium supplementation. There was no evidence of hypocalcemia, ectopic calcification, or definite drug-related serious adverse events. Low titers of anti-ENB-0040 antibodies developed in four patients, with no evident clinical, biochemical, or autoimmune abnormalities at 48 weeks of treatment. ENB-0040, an enzyme-replacement therapy, was associated with improved findings on skeletal radiographs and improved pulmonary and physical function in infants and young children with life-threatening hypophosphatasia. (Funded by Enobia Pharma and Shriners Hospitals for Children; number, NCT00744042.).
    New England Journal of Medicine 03/2012; 366(10):904-13. DOI:10.1056/NEJMoa1106173 · 55.87 Impact Factor
Show more