Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics.

Departments of Chemistry, The University of Michigan, Ann Arbor, 48109, United States.
Analytical Chemistry (Impact Factor: 5.83). 04/2011; 83(9):3406-14. DOI: 10.1021/ac103313x
Source: PubMed

ABSTRACT A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at -80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (∼1 min) extraction step. The utility of this rapid preparation method (∼5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L-asparaginase (L-ASP) is a therapeutic enzyme used clinically for the treatment of childhood acute lymphoblastic leukemia. L-ASP’s anticancer activity is believed to be associated primarily with depletion of asparagine, but secondary glutaminase activity has also been implicated in its anticancer mechanism of action. To investigate the effects of L-ASP on amino acid metabolism, we have developed an LC–MS/MS metabolomics platform for high-throughput quantitation of 29 metabolites, including all 20 proteinogenic amino acids, 6 metabolically related amino acid derivatives (ornithine, citrulline, sarcosine, taurine, hypotaurine, and cystine), and 3 polyamines (putrescince, spermidine, and spermine) in adherent cultured cells. When we examined the response of OVCAR-8 ovarian cancer cells in culture to L-ASP, asparagine was depleted from the medium within seconds. Interestingly, intracellular asparagine was also depleted rapidly, and the mechanism was suggested to involve rapid export of intracellular asparagine followed by rapid conversion to aspartic acid by L-ASP. We also found that L-ASP-induced cell death was more closely associated with glutamine concentration than with asparagine concentration. Time-course analysis revealed the dynamics of amino acid metabolism after feeding cells with fresh medium. Overall, this study provides new insight into L-ASP’s mechanism of action, and the optimized analytical method can be extended, with only slight modification, to other metabolically active amino acids, related compounds, and a range of cultured cell types.
    Metabolomics 10/2014; 10(5). · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The successful extraction of metabolites is a critical step in metabolite profiling. By optimizing metabolite extraction, the range and quantitative capacity of metabolomics studies can be improved. We considered eight separate extraction protocols for the preparation of a metabolite extract from cultured mammalian cells. Parameters considered included temperature, pH, and cell washing before extraction. The effects on metabolite recovery were studied using a high resolution liquid chromatography mass spectrometry (LC-HRMS) platform that measures metabolites of diverse chemical classes including among others amino acids, lipids, and sugar derivatives. The temperature considered during the extraction or the presence of formic acid, a commonly used additive, was shown to have minimal effects on the measured ion intensities of metabolites. However, washing of samples before metabolite extraction whether with water or PBS (both commonly considered practices) exhibited dramatic effects on measured intensities of both intra- and extra-cellular metabolites. Together these findings present a systematic assessment of extraction conditions for metabolite profiling. Copyright © 2015 Elsevier Inc. All rights reserved.
    Analytical Biochemistry 01/2015; · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic profiling has become an important tool in biological research, and the chromatographic separation of metabolites coupled with mass spectrometric detection is the most frequently used approach for such studies. The establishment of robust chromatographic methods for comprehensive coverage of the anionic metabolite pool is especially challenging. In this study, the development of a capillary ion exchange chromatography (capIC) – negative ESI tandem mass spectrometry (MS/MS) workflow for the quantitative profiling of the phosphometabolome (e.g., sugar phosphates and nucleotides) is presented. The chromatographic separation and MS/MS conditions were optimized, and the precision of repetitive injections and accuracy in terms of error percentage to true concentration were assessed. The precision is excellent for a capillary flow system with an average CV% of 8.5% for a 50-fmol standard injection and in the lower 2.4–4.4% range for higher concentrations (500–7500 fmol). The limit of detection (LOD) ranges from 1 to 100 nM (5–500 fmol injected on column), and the limit of quantitation (LOQ) ranges from 1 to 500 nM (5–2500 fmol injected on column). A fast gradient method with the injection of 50% methanol in water between analytical samples is needed to eliminate carry-over and ensure optimal re-equilibration of the column. Finally, the quantitative applicability of the system was tested on real biological matrices using the constant-volume standard addition method (SAM). Extracts of the human kidney Hek293 cell line were spiked with increasing concentrations of standards to determine the concentration of each metabolite in the sample. Forty-four metabolites were detected with an average uncertainty of 4.1%. Thus, the capIC-MS/MS method exhibits excellent selectivity, sensitivity and precision for the quantitative profiling of the phosphometabolome.
    Journal of Chromatography A 10/2014; · 4.26 Impact Factor


1 Download
Available from