Article

Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines.

School of Pharmacy, Department of Pharmaceutical Technology, University of Athens, 15771, Greece.
Journal of Nanoscience and Nanotechnology (Impact Factor: 1.15). 02/2011; 11(2):1259-66. DOI: 10.1166/jnn.2011.3093
Source: PubMed

ABSTRACT Curcumin has been associated with the treatment of various diseases in traditional medicine, among them cancer. The major problems that prevent its approval as therapeutic agent are its low water solubility and its relatively low in vivo bioavailability. Liposomes are considered as effective drug carriers because of their ability to solubilize hydrophobic compounds and to alter their pharmacokinetic properties. The purpose of this study was the development of lyophilised liposomal curcumin fully characterized in terms of its physical properties [(zeta-potential, size, size distribution and Polydispercity index (PI)], and to evaluate its in vitro cytotoxic against colorectal cancer cell lines in a short-term and in a long-term (clonogenic) assay. Curcumin was incorporated in egg-phosphatidylcholine (EPC) liposomes at a drug to lipid molar ratio 1:14 achieving high incorporation efficiency close to 85%. The liposomal curcumin was lyophilized preserving thus its stability. The reconstitution of the formulation resulted in the original liposomal suspension. The release in FBS showed a plateau near 14% at 96 hours of incubation. The in vitro studies against colorectal cancer cell lines have shown that liposomes improve the activity of curcumin especially in the long-term assay and the liposomal formulation found to be more potent against HCT116 and HCT15, cell lines which express the MDR phenotype. EPC liposomal curcumin in a molar ratio of curcumin/EPC 1:14 has shown improved cytotoxic activity versus free curcumin against colorectal cancer cell lines. In vivo studies based on the recent findings are in progress in our laboratory.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tremendous therapeutic potential of curcumin as a chemopreventive, antineoplastic and chemosensitizing agent has failed to progress towards clinical development and commercialization due to its unfavorable physicochemical properties, low aqueous solubility, chemical instability, and pharmacokinetics. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-butylcalix[4]arene, to prepare various platforms for delivery of curcumin such as inclusion complex, supramolecular aggregates, and hybrid liposomal systems. The inclusion complex is characterized by UV-vis and FT-IR spectroscopy as well as thermal gravimetrical analysis and differential scanning calorimetry. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility enhancement of curcumin is attributed to additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. A hybrid liposomal system is created via encapsulation of the inclusion complex in dipalmitoylphosphatidylcholine:cholesterol liposomes. Bare and liposomal curcumin:BEC-X inclusion complexes, as well as free curcumin were additionally investigated for cytotoxicity and apoptogenic activity against human tumor cell lines.
    International Journal of Pharmaceutics 06/2014; 472:165. · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.
    BioMed Research International 01/2014; 2014:394264. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed.
    Cancer Research and Treatment 01/2014; 46(1):2-18. · 1.96 Impact Factor