Article

A "two-hit" hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport.

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2011; 286(21):18845-55. DOI: 10.1074/jbc.M111.231118
Source: PubMed

ABSTRACT Carboxyl-terminal fragments (CTFs) of TDP-43 aggregate to form the diagnostic signature inclusions of frontotemporal lobar degeneration and amyotrophic lateral sclerosis, but the biological significance of these CTFs and how they are generated remain enigmatic. To address these issues, we engineered mammalian cells with an inducible tobacco etch virus (TEV) protease that cleaves TDP-43 containing a TEV cleavage site. Regions of TDP-43 flanking the second RNA recognition motif (RRM2) are efficiently cleaved by TEV, whereas sites within this domain are more resistant to cleavage. CTFs containing RRM2 generated from de novo cleavage of nuclear TDP-43 are transported to the cytoplasm and efficiently cleared, indicating that cleavage alone is not sufficient to initiate CTF aggregation. However, CTFs rapidly aggregated into stable cytoplasmic inclusions following de novo cleavage when dynein-mediated microtubule transport was disrupted, RNA was depleted, or natively misfolded CTFs were introduced into these cells. Our data support a "two-hit" mechanism of CTF aggregation dependent on TDP-43 cleavage.

0 Followers
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.
    Neurotherapeutics 02/2015; 12(2). DOI:10.1007/s13311-015-0338-x · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X-associated Tremor Ataxia Syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide repeat expansion in the 5'UTR of the Fragile X gene, FMR1. FXTAS is thought to arise primarily from an RNA gain-of-function toxicity mechanism. However, recent studies demonstrate that the repeat also elicits production of a toxic polyglycine protein, FMRpolyG, via Repeat-Associated Non-AUG (RAN) initiated translation. Pathologically, FXTAS is characterized by ubiquitin positive intranuclear neuronal inclusions, raising the possibility that failure of protein quality control pathways could contribute to disease pathogenesis. To test this hypothesis, we used Drosophila and cell based models of CGG-repeat associated toxicity. In Drosophila, ubiquitin proteasome system (UPS) impairment led to enhancement of CGG-repeat induced degeneration whereas overexpression of the chaperone protein HSP70 suppressed this toxicity. In transfected mammalian cells, CGG-repeat expression triggered accumulation of a GFP-UPS reporter in a length-dependent fashion. To delineate the contributions from CGG repeats as RNA from RAN translation associated toxicity, we enhanced or impaired the production of FMRpolyG in these models. Driving expression of FMRpolyG enhanced induction of UPS impairment in cell models while prevention of RAN translation attenuated UPS impairment in cells and suppressed the genetic interaction with UPS manipulation in Drosophila. Taken together, these findings suggest that CGG repeats induce ubiquitin proteasome system impairment at least in part through activation of RAN translation. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Human Molecular Genetics 05/2015; DOI:10.1093/hmg/ddv165 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Propagation of pathological protein assemblies via a prion-like mechanism has been suggested to drive neurodegenerative diseases, such as Parkinson's and Alzheimer's. Recently, amyotrophic lateral sclerosis (ALS)-linked proteins, such as SOD1, TDP-43 and FUS were shown to follow self-perpetuating seeded aggregation, thereby adding ALS to the group of prion-like disorders. The cell-to-cell spread of these pathological protein assemblies and their pathogenic mechanism is poorly understood. However, as ALS is a non-cell autonomous disease and pathology in glial cells was shown to contribute to motor neuron damage, spreading mechanisms are likely to underlie disease progression via the interplay between affected neurons and their neighboring glial cells.
    Virus Research 02/2015; 8. DOI:10.1016/j.virusres.2014.12.032 · 2.83 Impact Factor