Differential effects of nicotine and tobacco smoke condensate on human annulus fibrosus cell metabolism

Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
Journal of Orthopaedic Research (Impact Factor: 2.97). 10/2011; 29(10):1585-91. DOI: 10.1002/jor.21417
Source: PubMed

ABSTRACT Tobacco smoking increases the risk of intervertebral disc degeneration (IDD) and back pain, but the mechanisms underlying the adverse effects of smoking are largely unknown. Current hypotheses predict that smoking contributes to IDD indirectly through nicotine-mediated vasoconstriction which limits the exchange of nutrients between the discs and their surroundings. We alternatively hypothesize that direct contact of disc cells, that is, cells in the outermost annulus and those present along fissures in degenerating discs, with the vascular system containing soluble tobacco smoking constituents could perturb normal metabolic activities resulting in IDD. In this study, we tested our hypothesis by comparing the effects of direct exposure of human disc cells to tobacco smoke condensate and nicotine on cell viability and metabolic activity. We showed that smoke condensate, which contains all of the water-soluble compounds inhaled by smokers, exerts greater detrimental effects on human disc cell viability and metabolism than nicotine. Smoke condensate greatly induced an inflammatory response and gene expression of metalloproteinases while reduced active matrix synthesis and expression of matrix structural genes. Therefore, we have demonstrated that disc cell exposure to the constituents of tobacco smoke has negative consequences which have the potential to alter disc matrix homeostasis.

  • Source
    01/2012; S6:in press. DOI:10.4172/2155-9899.S6-003
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the mechanisms by which chronic tobacco smoking promotes intervertebral disc degeneration (IDD) and vertebral degeneration in mice. Three month old C57BL/6 mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 6 months) to model long-term smoking in humans. Total disc proteoglycan (PG) content [1,9-dimethylmethylene blue (DMMB) assay], aggrecan proteolysis (immunobloting analysis), and cellular senescence (p16INK4a immunohistochemistry) were analyzed. PG and collagen syntheses ((35)S-sulfate and (3)H-proline incorporation, respectively) were measured using disc organotypic culture. Vertebral osteoporosity was measured by micro-computed tomography. Disc PG content of smoke-exposed mice was 63% of unexposed control, while new PG and collagen syntheses were 59% and 41% of those of untreated mice, respectively. Exposure to tobacco smoke dramatically increased metalloproteinase-mediated proteolysis of disc aggrecan within its interglobular domain (IGD). Cellular senescence was elevated two-fold in discs of smoke-exposed mice. Smoke exposure increased vertebral endplate porosity, which closely correlates with IDD in humans. These findings further support tobacco smoke as a contributor to spinal degeneration. Furthermore, the data provide a novel mechanistic insight, indicating that smoking-induced IDD is a result of both reduced PG synthesis and increased degradation of a key disc extracellular matrix protein, aggrecan. Cleavage of aggrecan IGD is extremely detrimental as this results in the loss of the entire glycosaminoglycan-attachment region of aggrecan, which is vital for attracting water necessary to counteract compressive forces. Our results suggest identification and inhibition of specific metalloproteinases responsible for smoke-induced aggrecanolysis as a potential therapeutic strategy to treat IDD.
    Osteoarthritis and Cartilage 04/2012; 20(8):896-905. DOI:10.1016/j.joca.2012.04.010 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Object The authors report the 5-year results for radiographically demonstrated adjacent-level degenerative changes from a prospective multicenter study in which patients were randomized to either total disc replacement (TDR) or circumferential fusion for single-level lumbar degenerative disc disease (DDD). Methods Two hundred thirty-six patients with single-level lumbar DDD were enrolled and randomly assigned to 2 treatment groups: 161 patients in the TDR group were treated using the ProDisc-L (Synthes Spine, Inc.), and 75 patients were treated with circumferential fusion. Radiographic follow-up data 5 years after treatment were available for 123 TDR patients and 43 fusion patients. To characterize adjacent-level degeneration (ALD), radiologists at an independent facility read the radiographic films. Adjacent-level degeneration was characterized by a composite score including disc height loss, endplate sclerosis, osteophytes, and spondylolisthesis. At 5 years, changes in ALD (ΔALDs) compared with the preoperative assessment were reported. Results Changes in ALD at 5 years were observed in 9.2% of TDR patients and 28.6% of fusion patients (p = 0.004). Among the patients without adjacent-level disease preoperatively, new findings of ALD at 5 years posttreatment were apparent in only 6.7% of TDR patients and 23.8% of fusion patients (p = 0.008). Adjacent-level surgery leading to secondary surgery was reported for 1.9% of TDR patients and 4.0% of fusion patients (p = 0.6819). The TDR patients had a mean preoperative index-level range of motion ([ROM] of 7.3°) that decreased slightly (to 6.0°) at 5 years after treatment (p = 0.0198). Neither treatment group had significant changes in either ROM or translation at the superior adjacent level at 5 years posttreatment compared with baseline. Conclusions At 5 years after the index surgery, ProDisc-L maintained ROM and was associated with a significantly lower rate of ΔALDs than in the patients treated with circumferential fusion. In fact, the fusion patients were greater than 3 times more likely to experience ΔALDs than were the TDR patients. Clinical trial registration no.: NCT00295009.
    Journal of neurosurgery. Spine 10/2012; 17(6). DOI:10.3171/2012.9.SPINE11717 · 2.36 Impact Factor