Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia - relationship with COMT Val(108/158) Met polymorphism, gender and symptomatology

Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
Journal of Psychopharmacology (Impact Factor: 3.59). 03/2011; 25(7):888-95. DOI: 10.1177/0269881111400644
Source: PubMed


22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degradation of catecholamines, including dopamine (DA). COMT activity is sexually dimorphic and its gene contains a functional polymorphism, Val¹⁰⁸/¹⁵⁸ Met; the Met allele is associated with lower enzyme activity. We report the first controlled catecholamine study in 22q11DS-related schizophrenia. Twelve adults with 22q11DS with schizophrenia (SCZ+) and 22 adults with 22q11DS without schizophrenia (SCZ-) were genotyped for the COMT Val¹⁰⁸/¹⁵⁸ Met genotype. We assessed dopaminergic markers in urine and plasma. We also correlated these markers with scores on the Positive and Negative Symptom Scale (PANSS). Contrary to our expectations, we found SCZ+ subjects to be more often Val hemizygous and SCZ- subjects more often Met hemizygous. Significant COMT cross gender interactions were found on dopaminergic markers. In SCZ+ subjects there was a negative correlation between prolactin levels and scores on the general psychopathology subscale of the PANSS scores. These findings suggest intriguing, but complex, interactions of the COMT Val¹⁰⁸/¹⁵⁸ Met polymorphism, gender and additional factors on DA metabolism, and its relationship with schizophrenia.

1 Follower
34 Reads
  • Source
    • "region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia.29 In particular, the Val-108/158-Met COMT polymorphism has received empirical attention as a possible risk factor for psychosis.30 The biologic basis of mental illness in 22q11DS is not clear yet, but it is clear that the syndrome presents an excellent model for understanding psychiatric disorders, especially psychosis, in humans. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%-2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome.
    Neuropsychiatric Disease and Treatment 12/2013; 9:1873-1884. DOI:10.2147/NDT.S52188 · 1.74 Impact Factor
  • Source
    • "Plasma PRL levels may provide a reflection of central DA activity (Boot et al., 2011a), because DA is the predominant inhibitor of PRL release from the pituitary gland (Haddad and Wieck, 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: 22q11 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22, which includes the gene coding for catechol-O-methyl-transferase (COMT). High dopamine (DA) levels due to COMT haplo-insufficiency may be associated with the increased risk of developing schizophrenia in adults with 22q11DS. Reduced prepulse inhibition (PPI) of the acoustic startle response has been associated with schizophrenia and with disrupted DAergic transmission in the prefrontal cortex (PFC). COMT Val(158)Met polymorphism has been shown to influence PPI. We report the first study in adults with 22q11DS to examine PPI of the acoustic startle response and its modulation by COMT Val(158)Met polymorphism. Startle reactivity (SR) and PPI of the acoustic startle response were measured in 23 adults with 22q11DS and 21 healthy controls. 22q11DS subjects were genotyped for the functional COMT Val(158)Met polymorphism. 22q11DS Met hemizygotes showed reduced SR and PPI compared with 22q11DS Val hemizygotes. The effect of COMT Val(158)Met polymorphism on PPI was no longer significant when controlling for baseline SR. Met hemizygosity in 22q11DS is associated with reduced SR and influences PPI indirectly. Decreased PFC functioning following excessive PFC DA levels may be one of the mechanisms by which the Met genotype in 22q11DS disrupts SR.
    Journal of Psychopharmacology 09/2012; 136(12). DOI:10.1177/0269881112456610 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression) of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.
    The Application of Clinical Genetics 02/2012; 5:1-18. DOI:10.2147/TACG.S21953
Show more