Article

Differential effects of Radix Paeoniae Rubra (Chishao) on cytokine and chemokine expression inducible by mycobacteria.

Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China. .
Chinese Medicine (Impact Factor: 1.79). 03/2011; 6(1):14. DOI: 10.1186/1749-8546-6-14
Source: PubMed

ABSTRACT Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6), IL-8 and tumor necrosis factor-α (TNF-α), to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao), a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac) during mycobacterial infection.
The interaction of Bacillus Calmette-Guerin (BCG) with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac.
In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the translocation of transcription factor NF-κB1 p50 to the nucleus.
RPR crude extracts and its fraction RPR-EA-S1 inhibited anti-inflammatory cytokine IL-10 and enhanced pro-inflammatory chemokine IL-8 expression in BCG-activated PBMac. The inhibitory effects of RPR-EA-S1 on IL-10 expression in BCG-activated PBMac may be due to the reduced nuclear translocation of NF-κB1 p50.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies, we have demonstrated that Tokishakuyakusan (TJ-23) can prolong the survival of allogeneic cardiac grafts and induce regulatory T cells. In this study we investigated the effects of Paeoniae radix and Cnidii rhizoma, two components of TJ-23, on alloimmune responses in a murine cardiac transplantation model and whether the two agents have synergistic effect. CBA mice underwent transplantation of a C57BL/6 heart and received oral administration of 2 g/kg/day of Paeoniae radix, Cnidii rhizoma, or the mixture of two agents from the day of transplantation until 7 days afterward. Naïve CBA mice rejected C57BL/6 cardiac graft acutely (median survival time (MST): 7 days). Paeoniae radix and Cnidii rhizoma prolonged C57BL/6 allograft survival (MSTs: 13.5 and 15.5 days, resp.). However, the mixture of two agents prolonged C57BL/6 allograft survival indefinitely (MST > 100 days). Secondary CBA recipients given whole splenocytes from primary combination-treated CBA recipients with B6 cardiac allografts 30 days after grafting had prolonged survival of B6 hearts (MST: 33 days). Flow cytometry studies showed that the CD4(+)CD25(+)Foxp3(+) regulatory cell population was increased in combination-treated recipients. Combination of Paeoniae radix and Cnidii rhizoma induced hyporesponsiveness to fully allogeneic cardiac allografts and may generate CD4(+)CD25(+)Foxp3(+) regulatory cells in our model.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:841408. · 1.72 Impact Factor

Full-text (3 Sources)

View
5 Downloads
Available from
Jun 10, 2014