Spata4 promotes osteoblast differentiation through Erk-activated Runx2 pathway

Protein Science Key Laboratory of Ministry of Education, State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing, People's Republic of China.
Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research (Impact Factor: 6.59). 08/2011; 26(8):1964-73. DOI: 10.1002/jbmr.394
Source: PubMed

ABSTRACT The spermatogenesis associated 4 gene (Spata4, previously named TSARG2) was demonstrated to participate in spermatogenesis. Here we report that Spata4 is expressed in osteoblasts and that overexpression of Spata4 accelerates osteoblast differentiation and mineralization in MC3T3-E1 cells. We found that Spata4 interacts with p-Erk1/2 in the cytoplasm and that overexpression of Spata4 enhances the phosphorylation of Erk1/2. Intriguingly, we observed that Spata4 increases the transcriptional activity of Runx2, a critical transcription factor regulating osteoblast differentiation. We showed that Spata4-activated Runx2 is through the activation of Erk1/2. Consistent with this observation, we found that overexpression of Spata4 increases the expression of osteoblastic marker genes, including osteocalcin (Ocn), Bmp2, osteopontin (Opn), type 1 collagen, osterix (Osx), and Runx2. We concluded that Spata4 promotes osteoblast differentiation and mineralization through the Erk-activated Runx2 pathway. Our findings provided new evidence that Spata4 plays a role in regulation of osteoblast differentiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased levels of reactive oxygen species (ROS) are a crucial pathogenic factor of osteoporosis. Gastrodin, isolated from the traditional Chinese herbal agent Gastrodia elata, is a potent antioxidant. We hypothesized that gastrodin demonstrates protective effects against osteoporosis by partially reducing reactive oxygen species in human bone marrow mesenchymal stem cells (hBMMSCs) and a macrophage cell line (RAW264.7 cells). We investigated gastrodin on osteogenic and adipogenic differentiation under oxidative stress in hBMMSCs. We also tested gastrodin on osteoclastic differentiation in RAW264.7 cells. Hydrogen peroxide (H2O2) was used to establish an oxidative cell injury model. Our results showed that gastrodin significantly promoted the proliferation of hBMMSCs, improved some osteogenic markers, reduced lipid generation and inhibited the mRNA expressin of several adipogenic genes in hBMMSCs. Moreover, gastrodin reduced the number of osteoclasts, TRAP activity and the expression of osteoclast-specific genes in RAW264.7 cells. Gastrodin suppressed the production of reactive oxygen species in both hBMMSCs and RAW264.7 cells. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our data revealed that gastrodin treatment reduced the activity of serum bone degradation markers, such as CTX-1 and TRAP. Importantly, it ameliorated the micro-architecture of trabecular bones. Gastrodin decreased osteoclast numbers in vivo by TRAP staining. To conclude, these results indicated that gastrodin shows protective effects against osteoporosis linking to a reduction in reactive oxygen species, suggesting that gastrodin may be useful in the prevention and treatment of osteoporosis. Copyright © 2014. Published by Elsevier Inc.
    Bone 12/2014; 73. DOI:10.1016/j.bone.2014.12.059 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microgravity decreases the differentiation of osteoblast. However, as this process is multistage and complex, the mechanism by which microgravity inhibits osteoblast differentiation is still unclear. We have previously found that 24 h acute treatment of simulated microgravity (SM) in a random positioning machine (RPM) significantly inhibited the differentiation of preosteoblasts and have explored whether osteoblasts show different response to microgravity condition at other stages, such as the mineralizing-stage. Murine MC3T3-E1 preosteoblasts induced for osteogenic differentiation for 7 days were cultured either under normal gravity or SM conditions for 24 h. SM treatment significantly suppressed mineralized nodule formation. Alkaline phosphatase (ALP) activity was dramatically decreased, and the expression of ALP gene was downregulated. Expression of well-known markers and regulators for osteoblasts differentiation, including osteocalcin (OC), type I collagen α1 (Col Iα1), dentin matrix protein 1 (DMP1) and runt-related transcription factor 2 (Runx2), were downregulated. Western blot analysis showed that the phosphorylated extracellular signal-regulated kinase (p-ERK) level was lower under SM condition. Thus, the initiation of osteoblast mineralization is suppressed by SM condition, and the suppression may be through the regulation of ALP activity and the osteogenic gene expression. ERK signaling might be involved in this process. These results are relevant to the decrease of osteoblast maturation and bone formation under microgravity condition.
    Cell Biology International 04/2015; 39(4). DOI:10.1002/cbin.10391 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fucoidan has attracted attention as a potential drug because of its biological activities, which include osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of fucoidan in human alveolar bone marrow-derived mesenchymal stem cells (hABM-MSCs) remain largely unknown. We investigated the action of fucoidan on osteoblast differentiation in hABM-MSCs and its impact on signaling pathways. Its effect on proliferation was determined using the crystal violet staining assay. Osteoblast differentiation was evaluated based on alkaline phosphatase (ALP) activity and the mRNA expression of multiple osteoblast markers. Calcium accumulation was determined by Alizarin red S staining. We found that fucoidan induced hABM-MSC proliferation. It also significantly increased ALP activity, calcium accumulation and the expression of osteoblast-specific genes, such as ALP, runt-related transcription factor 2, type I collagen-α 1 and osteocalcin. Moreover, fucoidan induced the expression of bone morphogenetic protein 2 (BMP2) and stimulated the activation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase by increasing phosphorylation. However, the effect of fucoidan on osteogenic differentiation was inhibited by specific inhibitors of ERK (PD98059) and JNK (SP600125) but not p38 (SB203580). Fucoidan enhanced BMP2 expression and Smad 1/5/8, ERK and JNK phosphorylation. Moreover, the effect of fucoidan on osteoblast differentiation was diminished by BMP2 knockdown. These results indicate that fucoidan induces osteoblast differentiation through BMP2-Smad 1/5/8 signaling by activating ERK and JNK, elucidating the molecular basis of the osteogenic effects of fucoidan in hABM-MSCs.
    Experimental and Molecular Medicine 01/2015; 47(1):e128. DOI:10.1038/emm.2014.95 · 2.46 Impact Factor