Article

Biology of Cox-2: an application in cancer therapeutics.

INSERM U-955, Team No. 10, Institut Mondor de Recherche Biomédicale, Université Paris Est, 94010 Créteil, Paris, France.
Current drug targets (Impact Factor: 3.93). 03/2011; 12(7):1082-93.
Source: PubMed

ABSTRACT Cyclooxygenase-2 (Cox-2) is an inducible enzyme involved in the conversion of arachidonic acid to prostaglandin and other eicosanoids. Molecular pathology studies have revealed that Cox-2 is over-expressed in cancer and stroma cells during tumor progression, and anti-cancer chemo-radiotherapies induce expression of Cox-2 in cancer cells. Elevated tumor Cox-2 is associated with increased angiogenesis, tumor invasion and promotion of tumor cell resistance to apoptosis. Several experimental and clinical studies have established potent anti-cancer activity of NSAID (Non-steroidal anti-inflammatory drugs) and other Cox-2 inhibitors such as celecoxib. Much attention is being focused on Cox-2 inhibitors as beneficial target for cancer chemotherapy. The mode of action of Cox-2 and its inhibitors remains unclear. Further clinical application needs to be investigated for comprehending Cox-2 biological functions and establishing it as an effective target in cancer therapy.

2 Bookmarks
 · 
379 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza Bunge (Danshen in Chinese) is a classical Huoxue Huayu (a traditional Chinese medical term means promoting blood circulation and removing blood stasis) herb with 1000 years of clinical application. It mainly contains two groups of ingredients: the hydrophilic phenolic acids and the lipophilic tanshinones. Both groups have demonstrated multiple bioactivities, such as antioxidative stress, antiplatelet aggregation, anti-inflammation, among others. Recent data have demonstrated that its lipophilic compounds, especially the tanshinones, show potent anticancer activities both in vitro and in vivo. The anticancer effects of the hydrophilic phenolic acids have also been reported. Furthermore, tanshinones provide structural skeletons for chemical modifications, allowing for a series of derivatives of interests. This review provides a systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones, aiming to bring new insights for further research and development of this ancient herb.
    Medicinal Research Reviews 10/2013; · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toad glandular secretions and skin extractions contain many natural agents which may provide a unique resource for novel drug development. The dried secretion from the auricular and skin glands of Chinese toad (Bufo bufo gargarizans) is named Chansu, which has been used in Traditional Chinese Medicine (TCM) for treating infection and inflammation for hundreds of years. The sterilized hot water extraction of dried toad skin is named Huachansu (Cinobufacini) which was developed for treating hepatitis B virus (HBV) and several types of cancers. However, the mechanisms of action of Chansu, Huachansu, and their constituents within are not well reported. Existing studies have suggested that their anti-inflammation and anticancer potential were via targeting Nuclear Factor (NF)-κB and its signalling pathways which are crucial hallmarks of inflammation and cancer in various experimental models. Here, we review some current studies of Chansu, Huachansu, and their compounds in terms of their use as both anti-inflammatory and anticancer agents. We also explored the potential use of toad glandular secretions and skin extractions as alternate resources for treating human cancers in combinational therapies.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:312684. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kinetically inert metal complexes have arisen as promising alternatives to existing platinum and ruthenium chemotherapeutics. Reported herein, to our knowledge, is the first example of a substitutionally inert, Group 9 organometallic compound as a direct inhibitor of signal transducer and activator of transcription 3 (STAT3) dimerization. From a series of cyclometalated rhodium(III) and iridium(III) complexes, a rhodium(III) complex emerged as a potent inhibitor of STAT3 that targeted the SH2 domain and inhibited STAT3 phosphorylation and dimerization. Significantly, the complex exhibited potent anti-tumor activities in an in vivo mouse xenograft model of melanoma. This study demonstrates that rhodium complexes may be developed as effective STAT3 inhibitors with potent anti-tumor activity.
    Angewandte Chemie International Edition 05/2014; · 11.34 Impact Factor

Full-text

View
595 Downloads
Available from
Jun 5, 2014