Article

MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection.

Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom.
RNA (Impact Factor: 4.62). 03/2011; 17(5):933-43. DOI: 10.1261/rna.2533811
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2'-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs.

0 Followers
 · 
210 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer-related fatalities. Recent success developing genotypically-targeted therapies, with potency only in well-defined subpopulations of tumors, suggests a path to improving patient survival. We utilized a library of oligonucleotide inhibitors to microRNAs, a class of post-transcriptional gene regulators, to identify novel synthetic lethal interactions between miRNA inhibition and molecular mechanisms in NSCLC. Two inhibitors, those for miR-92a and miR-1226*, produced a toxicity distribution across a panel of 27 cell lines that correlated with loss of p53 protein expression. Notably, depletion of p53 was sufficient to confer sensitivity to otherwise resistant telomerase-immortalized bronchial epithelial cells. We found that both miR inhibitors cause sequence-specific down-regulation of the miR-17~92 polycistron, and this down-regulation was toxic only in the context of p53 loss. Mechanistic studies indicated the selective toxicity of miR-17~92 polycistron inactivation was the consequence of derepression of vitamin D signaling via suppression of CYP24A1; a rate limiting enzyme in the 1α,25-dihydroxyvitamin D3 metabolic pathway. Of note, high CYP24A1 expression significantly correlated with poor patient outcome in multiple lung cancer cohorts. Our results indicate that the screening approach utilized in this study can identify clinically relevant synthetic lethal interactions, and that vitamin D receptor agonists may show enhanced efficacy in p53-negative lung cancer patients. Copyright © 2014, American Association for Cancer Research.
    Cancer Research 12/2014; 75(4). DOI:10.1158/0008-5472.CAN-14-1329 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are endogenous small non-coding RNAs of ~23 nucleotides in length that form up a novel class of regulatory determinants, with a large set of target mRNAs postulated for every single miRNA. Thousands of miRNAs have been discovered so far, with hundreds of them shown to govern biological processes with impact on disease. However, very little is known about how they specifically interfere with biological pathways and disease mechanisms. To investigate this interaction, the hunt for direct miRNA targets that mediate the miRNA effects-the "needle in the haystack"-is an essential step. In this review we provide a comprehensive workflow of successfully applied methods starting from the identification of putative miRNA-target pairs, followed by validation of direct miRNA-mRNA interactions, and finally presenting methods that dissect the impact of particular miRNA-target pairs on a biological process or disease. This guide allows the way to be paved for obtaining biologically meaningful miRNA targets.
    International Journal of Molecular Sciences 10/2014; 15(11):20266-20289. DOI:10.3390/ijms151120266 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are involved in many pathologic processes and are a promising target for therapeutic intervention. However, successful, localized delivery of microRNA-based therapeutics is lacking. In this study, cationic ultrasound-responsive microbubbles (MBs) were used to deliver microRNA blockers and mimics in vitro and in vivo. Cationic MBs successfully delivered microRNA blockers to human endothelial cells on ultrasound (US) exposure in vitro. This in vitro US protocol did not successfully deliver microRNA mimics to skeletal muscle of mice, whereas an US protocol that is routinely used for contrast imaging did. Additionally, we used cationic MBs and US to locally deliver antimiR and antagomiR molecules with US causing inertial cavitation. Delivery of antimiR to the extracellular compartments of the muscle was only slightly increased, whereas delivery of antagomiR to the capillaries, myocytes and extracellular space was significantly increased. AntagomiR seems to be a more suitable microRNA blocker than antimiR for use in combination with MBs and US for local delivery.
    Ultrasound in Medicine & Biology 11/2014; 41(1). DOI:10.1016/j.ultrasmedbio.2014.08.012 · 2.10 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Nov 25, 2014