Article

A Functional Polymorphism in the Epidermal Growth Factor Gene Is Associated With Risk for Hepatocellular Carcinoma

Gastrointestinal Unit, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA.
Gastroenterology (Impact Factor: 12.82). 03/2011; 141(1):141-9. DOI: 10.1053/j.gastro.2011.03.045
Source: PubMed

ABSTRACT A single nucleotide polymorphism 61*G (rs4444903) in the epidermal growth factor (EGF) gene has been associated, in 2 case-control studies, with hepatocellular carcinoma (HCC). We tested associations between demographic, clinical, and genetic data and development of HCC, and developed a simple predictive model in a cohort of patients with chronic hepatitis C and advanced fibrosis.
Black and white subjects from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial (n=816) were followed up prospectively for development of a definite or presumed case of HCC for a median time period of 6.1 years. We used the Cox proportional hazards regression model to determine the hazard ratio for risk of HCC and to develop prediction models.
Subjects with EGF genotype G/G had a higher adjusted risk for HCC than those with genotype A/A (hazard ratio, 2.10; 95% confidence interval, 1.05-4.23; P=.03). After adjusting for EGF genotype, blacks had no increased risk of HCC risk compared with whites. Higher serum levels of EGF were observed among subjects with at least one G allele (P=.08); the subset of subjects with EGF G/G genotype and above-median serum levels of EGF had the highest risk of HCC. We developed a simple prediction model that included the EGF genotype to identify patients at low, intermediate, and high risk for HCC; 6-year cumulative HCC incidences were 2.3%, 10.4%, and 26%, respectively.
We associated the EGF genotype G/G with increased risk for HCC; differences in its frequency among black and white subjects might account for differences in HCC incidence between these groups. We developed a model that incorporates EGF genotype and demographic and clinical variables to identify patients at low, intermediate, and high risk for HCC.

0 Bookmarks
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single nucleotide polymorphisms (SNPs) in the epidermal growth factor (EGF, rs4444903), patatin-like phospholipase domain-containing protein 3 (PNPLA3, rs738409) genes, and near the interleukin-28B (IL28B, rs12979860) gene are linked to treatment response, fibrosis, and hepatocellular carcinoma (HCC) in chronic hepatitis C. Whether these SNPs independently or in combination predict clinical deterioration in hepatitis C virus (HCV)-related cirrhosis is unknown. We genotyped SNPs in EGF, PNPLA3, and IL28B from liver tissue from 169 patients with biopsy-proven HCV cirrhosis. We estimated risk of clinical deterioration, defined as development of ascites, encephalopathy, variceal hemorrhage, HCC, or liver-related death using Cox proportional hazards modeling. During a median follow-up of 6.6 years, 66 of 169 patients experienced clinical deterioration. EGF non-AA, PNPLA3 non-CC, and IL28B non-CC genotypes were each associated with increased risk of clinical deterioration in age, sex, and race-adjusted analysis. Only EGF non-AA genotype was independently associated with increased risk of clinical deterioration (hazard ratio [HR] 2.87; 95% confidence interval [CI] 1.31-6.25) after additionally adjusting for bilirubin, albumin, and platelets. Compared to subjects who had 0-1 unfavorable genotypes, the HR for clinical deterioration was 1.79 (95%CI 0.96-3.35) for 2 unfavorable genotypes and 4.03 (95%CI 2.13-7.62) for unfavorable genotypes for all three loci (Ptrend<0.0001). In conclusion, among HCV cirrhotics, EGF non-AA genotype is independently associated with increased risk for clinical deterioration. Specific PNPLA3 and IL28B genotypes also appear to be associated with clinical deterioration. These SNPs have potential to identify patients with HCV-related cirrhosis who require more intensive monitoring for decompensation or future therapies preventing disease progression.
    PLoS ONE 12/2014; 9(12):e114747. DOI:10.1371/journal.pone.0114747 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is a complex disease with a dismal prognosis. Consequently, a translational approach is required to personalized clinical decision making to improve survival of HCC patients. Molecular signatures from cirrhotic livers and single nucleotide polymorphism have been linked with HCC occurrence. Identification of high-risk populations will be useful to design chemopreventive trials. In addition, molecular signatures derived from tumor and nontumor samples are associated with early tumor recurrence due to metastasis and late tumor recurrence due to de novo carcinogenesis after curative treatment, respectively. Identification of patients with a high risk of relapse will guide adjuvant randomized trials. The genetic landscape drawn by next-generation sequencing has highlighted the genomic diversity of HCC. Genetic drivers recurrently mutated belong to different signaling pathways including telomere maintenance, cell-cycle regulators, chromatin remodeling, Wnt/b-catenin, RAS/RAF/MAPK kinase, and AKT/mTOR pathway. These cancer genes will be ideally targeted by biotherapies as a paradigm of stratified medicine adapted to tumor biology.
    Seminars in Liver Disease 11/2014; 34(4):363-75. DOI:10.1055/s-0034-1394137 · 5.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The EGFR signaling pathway is important in the control of vital processes in the carcinogenesis of hepatocellular carcinoma (HCC), including cell survival, cell cycle progression, tumor invasion and angiogenesis. In the current study, we aim to assess if genetic variants in the genes of the EGFR signaling pathway are associated with the prognosis of HCC. We genotyped 36 single nucleotide polymorphisms (SNP) in four core genes (EGF, EGFR, VEGF, and VEGFR2) by using DNA from blood samples of 363 HCC patients with surgical resection. The associations between genotypes and overall survival (OS) and disease-free survival (DFS) were estimated using the Kaplan-Meier method. Hazard ratios (HRs) and 95% confident intervals (CIs) were estimated for the multivariate survival analyses by Cox proportional hazards regression models, adjusting for age, gender, family history, HBsAg and AFP. We found that five SNPs in the VEGFR2 gene were significantly associated with clinical outcomes of HCC patients. Among them, four SNPs (rs7692791, rs2305948, rs13109660, rs6838752) were associated with OS (p=0.035, 0.038, 0.029 and 0.028, respectively), and two SNPs (rs7692791 and rs2034965) were associated with DFS (p=0.039 and 0.017, respectively). Particularly, rs7692791 TT genotype was associated with both reduced OS (p=0.037) and DFS (p=0.043). However, only one SNP rs2034965 with the AA genotype was shown to be an independent effect on DFS (p=0.009) in the multivariate analysis. None of the other 31 polymorphisms or 9 haplotypes attained from the four genes was significantly associated with OS or DFS. Our results illustrated the potential use of VEGFR2 polymorphisms as prognostic markers for HCC patients.