Article

Characterization of epithelial V-like antigen in human choroid plexus epithelial cells: potential role in CNS immune surveillance.

Department of Neurology and Program in Cellular and Molecular Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
Neuroscience Letters (Impact Factor: 2.06). 03/2011; 495(2):115-20. DOI: 10.1016/j.neulet.2011.03.051
Source: PubMed

ABSTRACT Prior work demonstrated that immune surveillance of the brain occurs primarily through the blood-cerebrospinal (CSF) fluid barrier rather than the blood-brain barrier endothelium. Recently, we identified epithelial V-like antigen (EVA), an immunoglobulin-like adhesion molecule, as a regulator of blood-CSF barrier integrity in a mouse model. Here we characterized EVA expression and function in human choroid plexus epithelial cells and analyzed its role in CD4 T lymphocyte adhesion. In human choroid plexus epithelial cells and a subset of CD4 T lymphocytes, EVA is expressed at high levels. Epithelial adhesion of T lymphocytes is inhibited by a blocking monoclonal antibody that recognizes EVA. T cell adhesion elicits calcium flux in choroid plexus epithelial cells that also can be blocked by an EVA-specific antibody. EVA-positive cell-cell contacts between epithelial and T cells are associated with increased complexity of cytoskeletal epithelial morphology. These results demonstrate that EVA is expressed in human choroid plexus epithelial cells and CD4 T lymphocytes and regulates CD4+ T lymphocyte adhesion to human choroid plexus epithelial cells in vitro. These data suggest a novel mechanism to regulate CNS immune surveillance.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas, the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e. allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo.
    Chemico-biological interactions 08/2013; 206(3). DOI:10.1016/j.cbi.2013.08.012 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natalizumab inhibits the transmigration of activated T lymphocytes into the brain and is highly efficacious in multiple sclerosis (MS). However, from a pharmacogenomic perspective, its efficacy and safety in specific patients remain unclear. Here our goal was to analyze the effects of epithelial V-like antigen (EVA) on anti-alpha4 integrin (VLA4) efficacy in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). EVA has been previously characterized in human CD4 T lymphocytes, mouse thymic development, and choroid plexus epithelial cells. Further analysis here demonstrated expression in B lymphocytes and an increase in EVA(+) lymphocytes following immunization. Following active induction of EAE using the MOG(35-55) active immunization model, EVA deficient mice developed more severe EAE and white matter tissue injury as compared to wild type controls. This severe EAE phenotype did not respond to anti-VLA4 treatment. In both the control antibody and anti-VLA4 conditions, these mice demonstrated persistent CNS invasion of mature B lymphocyte (CD19(+), CD21(+), sIgG(+)), increased serum autoantibody levels, and extensive complement and IgG deposition within lesions containing CD5(+)IgG(+) cells. Wild type mice treated with control antibody also demonstrated the presence of CD19(+), CD21(+), sIgG(+) cells within the CNS during peak EAE disease severity and detectable serum autoantibody. In contrast, wild type mice treated with anti-VLA4 demonstrated reduced serum autoantibody levels as compared to wild type controls and EVA-knockout mice. As expected, anti-VLA4 treatment in wild type mice reduced the total numbers of all CNS mononuclear cells and markedly decreased CD4 T lymphocyte invasion. Treatment also reduced the frequency of CD19(+), CD21(+), sIgG(+) cells in the CNS. These results suggest that anti-VLA4 treatment may reduce B lymphocyte associated autoimmunity in some individuals and that EVA expression is necessary for an optimal therapeutic response. We postulate that these findings could optimize the selection of treatment responders.
    PLoS ONE 08/2013; 8(8):e70954. DOI:10.1371/journal.pone.0070954 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
    Frontiers in Neuroscience 11/2014; 8:363. DOI:10.3389/fnins.2014.00363

Preview

Download
1 Download
Available from