Article

Characterization of epithelial V-like antigen in human choroid plexus epithelial cells: potential role in CNS immune surveillance.

Department of Neurology and Program in Cellular and Molecular Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
Neuroscience Letters (Impact Factor: 2.06). 03/2011; 495(2):115-20. DOI: 10.1016/j.neulet.2011.03.051
Source: PubMed

ABSTRACT Prior work demonstrated that immune surveillance of the brain occurs primarily through the blood-cerebrospinal (CSF) fluid barrier rather than the blood-brain barrier endothelium. Recently, we identified epithelial V-like antigen (EVA), an immunoglobulin-like adhesion molecule, as a regulator of blood-CSF barrier integrity in a mouse model. Here we characterized EVA expression and function in human choroid plexus epithelial cells and analyzed its role in CD4 T lymphocyte adhesion. In human choroid plexus epithelial cells and a subset of CD4 T lymphocytes, EVA is expressed at high levels. Epithelial adhesion of T lymphocytes is inhibited by a blocking monoclonal antibody that recognizes EVA. T cell adhesion elicits calcium flux in choroid plexus epithelial cells that also can be blocked by an EVA-specific antibody. EVA-positive cell-cell contacts between epithelial and T cells are associated with increased complexity of cytoskeletal epithelial morphology. These results demonstrate that EVA is expressed in human choroid plexus epithelial cells and CD4 T lymphocytes and regulates CD4+ T lymphocyte adhesion to human choroid plexus epithelial cells in vitro. These data suggest a novel mechanism to regulate CNS immune surveillance.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
    Frontiers in Neuroscience 11/2014; 8:363. DOI:10.3389/fnins.2014.00363
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CNS, which consists of the brain and spinal cord, is continuously monitored by resident microglia and blood-borne immune cells such as macrophages, dendritic cells and T cells to detect for damaging agents that would disrupt homeostasis and optimal functioning of these vital organs. Further, the CNS must balance between vigilantly detecting for potentially harmful factors and resolving any immunological responses that in themselves can create damage if left unabated. We discuss the physiological roles of the immune sentinels that patrol the CNS, the molecular markers that underlie their surveillance duties, and the consequences of interrupting their functions following injury and infection by viruses such as JC virus, human immunodeficiency virus, herpes simplex virus and West Nile virus.
    Nature Neuroscience 07/2012; 15(8):1096-101. DOI:10.1038/nn.3161 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
    Brain research 01/2013; DOI:10.1016/j.brainres.2013.01.013 · 2.83 Impact Factor

Preview

Download
1 Download
Available from

Similar Publications