Article

Characterization of epithelial V-like antigen in human choroid plexus epithelial cells: potential role in CNS immune surveillance.

Department of Neurology and Program in Cellular and Molecular Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
Neuroscience Letters (Impact Factor: 2.03). 03/2011; 495(2):115-20. DOI: 10.1016/j.neulet.2011.03.051
Source: PubMed

ABSTRACT Prior work demonstrated that immune surveillance of the brain occurs primarily through the blood-cerebrospinal (CSF) fluid barrier rather than the blood-brain barrier endothelium. Recently, we identified epithelial V-like antigen (EVA), an immunoglobulin-like adhesion molecule, as a regulator of blood-CSF barrier integrity in a mouse model. Here we characterized EVA expression and function in human choroid plexus epithelial cells and analyzed its role in CD4 T lymphocyte adhesion. In human choroid plexus epithelial cells and a subset of CD4 T lymphocytes, EVA is expressed at high levels. Epithelial adhesion of T lymphocytes is inhibited by a blocking monoclonal antibody that recognizes EVA. T cell adhesion elicits calcium flux in choroid plexus epithelial cells that also can be blocked by an EVA-specific antibody. EVA-positive cell-cell contacts between epithelial and T cells are associated with increased complexity of cytoskeletal epithelial morphology. These results demonstrate that EVA is expressed in human choroid plexus epithelial cells and CD4 T lymphocytes and regulates CD4+ T lymphocyte adhesion to human choroid plexus epithelial cells in vitro. These data suggest a novel mechanism to regulate CNS immune surveillance.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas, the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e. allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo.
    Chemico-biological interactions 08/2013; · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of human choroid plexus (CP) epithelium in the transport of solutes between the blood and the cerebrospinal fluid and/or in secretion processes may be studied by employing several experimental approaches. There are a number of in vitro techniques for human CP epithelium (CPE) and all have limitations that do not exclude them a priori, but that should be carefully taken into consideration. Developmental and morphological studies have been largely performed on human choroid plexus samples of either embryonic or post-mortem origin. Functional uptake studies may be performed on pathologically unaltered CP samples obtained during surgical removal of choroid plexus tumors. This approach can be used to explore transport processes mainly across the apical side of the CPE, but cannot be used to study vectorial transport across the CPE. Also, these samples have limited viability. A monolayer of CPE in culture, grown on permeable supports, provides the best available tool to study transport processes or polarized secretion by the CP, but thus far only limited attempts to culture these cells have been published and they mainly include data from neoplastic CPE. A study that used a human papilloma-derived cell line in culture showed that it forms a monolayer with barrier properties, although the cells express pleomorphic and neoplastic features and lack contact inhibition. Other cell cultures express some CPE markers but do not develop tight junctions/barrier properties. This article reviews the main characteristics and limitations of available in vitro methods to study human CPE, which could help researchers choose an appropriate experimental approach for a particular study.
    Fluids and barriers of the CNS. 02/2013; 10(1):10.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is the most common nontraumatic cause of neurologic disability in young adults. Despite treatment, progressive tissue injury leads to accumulation of disability in many patients. Here, our goal was to develop an immune-mediated strategy to promote tissue repair and clinical recovery in an MS animal model. We previously demonstrated that a variant of the voltage-gated sodium channel NaV1.5 is expressed intracellularly in human macrophages, and that it regulates cellular signaling. This channel is not expressed in mouse macrophages, which has limited the study of its functions. To overcome this obstacle, we developed a novel transgenic mouse model (C57BL6), in which the human macrophage NaV1.5 splice variant is expressed in vivo in mouse macrophages. These mice were protected from experimental autoimmune encephalomyelitis, the mouse model of MS. During active inflammatory disease, NaV1.5-positive macrophages were found in spinal cord lesions where they formed phagocytic cell clusters; they expressed markers of alternative activation during recovery. NaV1.5-positive macrophages that were adoptively transferred into wild-type recipients with established experimental autoimmune encephalomyelitis homed to lesions and promoted recovery. These results suggest that NaV1.5-positive macrophages enhance recovery from CNS inflammatory disease and could potentially be developed as a cell-based therapy for the treatment of MS.
    Journal of neuropathology and experimental neurology. 05/2013;

Full-text

View
1 Download
Available from