Article

Intracellular Transport by an Anchored Homogeneously Contracting F-Actin Meshwork

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, D-69117, Germany.
Current biology: CB (Impact Factor: 9.92). 03/2011; 21(7):606-11. DOI: 10.1016/j.cub.2011.03.002
Source: PubMed

ABSTRACT Actin-based contractility orchestrates changes in cell shape underlying cellular functions ranging from division to migration and wound healing. Actin also functions in intracellular transport, with the prevailing view that filamentous actin (F-actin) cables serve as tracks for motor-driven transport of cargo. We recently discovered an alternate mode of intracellular transport in starfish oocytes involving a contractile F-actin meshwork that mediates chromosome congression. The mechanisms by which this meshwork contracts and translates its contractile activity into directional transport of chromosomes remained open questions. Here, we use live-cell imaging with quantitative analysis of chromosome trajectories and meshwork velocities to show that the 3D F-actin meshwork contracts homogeneously and isotropically throughout the nuclear space. Centrifugation experiments reveal that this homogeneous contraction is translated into asymmetric, directional transport by mechanical anchoring of the meshwork to the cell cortex. Finally, by injecting inert particles of different sizes, we show that this directional transport activity is size-selective and transduced to chromosomal cargo at least in part by steric trapping or "sieving." Taken together, these results reveal mechanistic design principles of a novel and potentially versatile mode of intracellular transport based on sieving by an anchored homogeneously contracting F-actin meshwork.

0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric divisions are essential in metazoan development, where they promote the emergence of cell lineages. The mitotic spindle has astral microtubules that contact the cortex, which act as a sensor of cell geometry and as an integrator to orient cell division. Recent advances in live imaging revealed novel pools and roles of F-actin in somatic cells and in oocytes. In somatic cells, cytoplasmic F-actin is involved in spindle architecture and positioning. In starfish and mouse oocytes, newly discovered meshes of F-actin control chromosome gathering and spindle positioning. Because oocytes lack centrosomes and astral microtubules, F-actin networks are key players in the positioning of spindles by transmitting forces over long distances. Oocytes also achieve highly asymmetric divisions, and thus are excellent models to study the roles of these newly discovered F-actin networks in spindle positioning. Moreover, recent studies in mammalian oocytes provide a further understanding of the organisation of F-actin networks and their biophysical properties. In this Commentary, we present examples of the role of F-actin in spindle positioning and asymmetric divisions, with an emphasis on the most up-to-date studies from mammalian oocytes. We also address specific technical issues in the field, namely live imaging of F-actin networks and stress the need for interdisciplinary approaches.
    Journal of Cell Science 01/2014; 127(3). DOI:10.1242/jcs.142711 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP), produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.
    Frontiers in Oncology 12/2013; 3:308. DOI:10.3389/fonc.2013.00308
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal cells disassemble and reassemble their nuclear envelopes (NEs) upon each division [1, 2]. Nuclear envelope breakdown (NEBD) serves as a major regulatory mechanism by which mixing of cytoplasmic and nuclear compartments drives the complete reorganization of cellular architecture, committing the cell for division [2, 3]. Breakdown is initiated by phosphorylation-driven partial disassembly of the nuclear pore complexes (NPCs), increasing their permeability but leaving the overall NE structure intact [4-7]. Subsequently, the NE is rapidly broken into membrane fragments, defining the transition from prophase to prometaphase and resulting in complete mixing of cyto- and nucleoplasm [6, 8]. However, the mechanism underlying this rapid NE fragmentation remains largely unknown. Here, we show that NE fragmentation during NEBD in starfish oocytes is driven by an Arp2/3 complex-nucleated F-actin "shell" that transiently polymerizes on the inner surface of the NE. Blocking the formation of this F-actin shell prevents membrane fragmentation and delays entry of large cytoplasmic molecules into the nucleus. We observe spike-like protrusions extending from the F-actin shell that appear to "pierce" the NE during the fragmentation process. Finally, we show that NE fragmentation is essential for successful reproduction, because blocking this process in meiosis leads to formation of aneuploid eggs.
    Current Biology 06/2014; 24(12). DOI:10.1016/j.cub.2014.05.019 · 9.92 Impact Factor