Magnetic resonance imaging in multiple sclerosis: the role of conventional imaging.

Multiple Sclerosis Program, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, 8730 Alden Drive, Thalians E216, Los Angeles, CA 90048, USA.
Neurologic Clinics (Impact Factor: 1.61). 05/2011; 29(2):343-56. DOI: 10.1016/j.ncl.2011.01.005
Source: PubMed

ABSTRACT Magnetic resonance imaging (MRI) of the brain and spinal cord plays a central role in establishing the diagnosis of multiple sclerosis (MS), in monitoring disease activity, and as a key outcome measure in clinical trials of new MS therapies. Conventional MRI continues to evolve, reflecting advances in imaging hardware and software. These advances have led to important new insights into MS disease pathophysiology and can be used to improve patient management. Despite these improvements, standard MRI continues to capture only a small portion of the underlying changes that occur during the course of the disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance imaging (MRI) is widely used in clinical practice, and "abnormal brain MRI" findings often prompt assessment for multiple sclerosis (MS), even when there are no symptoms suggestive of the disease. Despite several studies involving individuals with "radiologically isolated syndrome" (RIS), little is known about what factors might predict future development of MS. The objective of this study was to longitudinally evaluate clinical and MRI characteristics of people who presented to an MS clinic because of incidental abnormal MRI findings but did not have typical symptoms of MS, in order to assess risk factors for developing MS.
    International Journal of MS Care. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the reliability of new magnetic resonance imaging (MRI) lesion counts by clinicians in a multiple sclerosis specialty clinic. An observational study. A multiple sclerosis specialty clinic. Eighty-five patients with multiple sclerosis participating in a National Institutes of Health–supported longitudinal study were included. Each patient had a brain MRI scan at entry and 6 months later using a standardized protocol. The number of new T2 lesions, newly enlarging T2 lesions, and gadolinium-enhancing lesions were measured on the 6-month MRI using a computer-based image analysis program for the original study. For this study, images were reanalyzed by an expert neuroradiologist and 3 clinician raters. The neuroradiologist evaluated the original image pairs; the clinicians evaluated image pairs that were modified to simulate clinical practice. New lesion counts were compared across raters, as was classification of patients as MRI active or inactive. Agreement on lesion counts was highest for gadolinium-enhancing lesions, intermediate for new T2 lesions, and poor for enlarging T2 lesions. In 18% to 25% of the cases, MRI activity was classified differently by the clinician raters compared with the neuroradiologist or computer program. Variability among the clinical raters for estimates of new T2 lesions was affected most strongly by the image modifications that simulated low image quality and different head position. Between-rater variability in new T2 lesion counts may be reduced by improved standardization of image acquisitions, but this approach may not be practical in most clinical environments. Ultimately, more reliable, robust, and accessible image analysis methods are needed for accurate multiple sclerosis disease-modifying drug monitoring and decision making in the routine clinic setting.
    JAMA Neurol. 03/2013; 70(3):338-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathophysiological correlates and the contribution to persisting disability of hypointense T1-weighted MRI lesions, black holes (BH), in multiple sclerosis (MS) are still unclear. In order to study the in vivo functional correlates of this MRI finding, we used 11C-PK11195 PET (PK-PET) to investigate changes in microglial activity. Ten relapsing and 9 progressive MS subjects had a PK-PET scan and a MRI scan alongside a full clinical assessment, including the expanded disability status scale (EDSS) for evaluation of disability. We studied the PK binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND) in T1 BHs. Out of a total of 1,242 BHs identified, 947 were PK enhancing. The PKBPND was correlated with the EDSS (r = 0.818; p < 0.05) only in the progressive group. In the relapsing patients there was an inverse correlation between PKBPND and BH total lesion volume in whole brain (r = − 0.781; p < 0.05). When progressive patients were grouped according to the disability outcome at 2 years from the PK-PET scan, the total PKBPND in BHs was found to be a significant outcome predictor of disability (p < 0.01). Our findings show that relapsing and progressive patients have heterogeneous patterns of PKBPND in T1 BHs and indicate that BHs are not just “holes” representing loss of axons and myelin, but display inflammatory activity in the form of activated microglia. The significant association between PKBPND, neurological impairment and outcome in progressive subjects supports a role for activated microglia in disability progression.
    Neurobiology of Disease 05/2014; · 5.20 Impact Factor