PE-11, a peptide derived from chromogranin B, in the rat eye

Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
Peptides (Impact Factor: 2.62). 03/2011; 32(6):1201-6. DOI: 10.1016/j.peptides.2011.03.011
Source: PubMed


The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.

5 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the presence and distribution of the chromogranin A-derived peptide GE-25 in the rat eye. The molecular form detected by the GE-25 antiserum was evaluated in the rat trigeminal ganglion, retina and remaining tissues of the rat eye by means of Western blots and the distribution pattern of GE-25-like immunoreactivity was studied in the rat eye and rat trigeminal ganglion by immunofluorescence. One single band of approximately 70kDa was stained in the trigeminal ganglion and retina which represents the uncleaved intact chromogranin A indicating that the proteolytic processing of chromogranin A to GE-25 is limited in these tissues. Sparse GE-25-like immunoreactive nerve fibers were visualized in the corneal stroma, at the limbus around blood vessels, in the sphincter and dilator muscle and stroma of the iris, in the stroma of the ciliary body and ciliary processes and in the stroma and around blood vessels in the choroid. This distribution pattern is characteristic for neuropeptides whereas the presence of immunoreactivity in the corneal endothelium and in Müller glia in the retina is atypical. GE-25-like immunoreactivity was found in small to medium-sized ganglion cells in the rat trigeminal ganglion clearly indicating that the nerve fibers in the rat eye are of sensory origin. The colocalization of GE-25-immunoreactivity with SP-immunoreactivity in the rat ciliary body is in agreement with the presumption of the sensory nature of the innervation of the anterior segment of the eye by GE-25.
    Peptides 05/2012; 36(2):286-91. DOI:10.1016/j.peptides.2012.04.022 · 2.62 Impact Factor