Article

Bacterial transcription terminators: the RNA 3'-end chronicles.

Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 03/2011; 412(5):793-813. DOI: 10.1016/j.jmb.2011.03.036
Source: PubMed

ABSTRACT The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.

0 Bookmarks
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gal operon of Escherichia coli has 4 cistrons, galE, T, K, and M. In our previous report (1), we have identified 6 different mRNA species, mE1, mE2, mT1, mK1, mK2, and mM1in the gal operon and mapped these mRNAs. The mRNA map suggests a gradient of gene expression known as natural polarity. In this study, we investigated how the mRNAs are generated to understand the cause of natural polarity. Results indicated that mE1, mT1, mK1, and mM1 whose 3'-ends are located at the end of each cistron are generated by transcription termination. Since each transcription termination is operating with certain frequency, and those 4 mRNAs have 5'-ends at the transcription initiation site(s), these transcription terminations are the basic cause of natural polarity. Transcription terminations at E-T, T-K junctions, making mE1, mT1 are Rho-dependent. However, the terminations to make mK1 and mM1 are partially Rho-dependent. The 5'-ends of mK2 are generated by an endonucleolytic cleavage of a pre-mK2 by RNase P, and the 3'-ends are generated by Rho-termination at 260 nucleotides before the end of the operon. The 5' portion of pre-mK2 is likely to become mE2. These results also suggested that galK expression could be regulated through mK2 production independent from natural polarity.
    Journal of bacteriology 05/2014; · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.
    Proceedings of the National Academy of Sciences of the United States of America. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Up to half of all transcription termination events in bacteria rely on the RNA-dependent helicase Rho. However, the nucleic acid sequences that promote Rho-dependent termination remain poorly characterized. Defining the molecular determinants that confer Rho-dependent termination is especially important for understanding how such terminators can be regulated in response to specific signals. Here, we identify an extraordinarily long-lived pause at the site where Rho terminates transcription in the 5'-leader region of the Mg(2+) transporter gene mgtA in Salmonella enterica. We dissect the sequence elements required for prolonged pausing in the mgtA leader and establish that the remarkable longevity of this pause is required for a riboswitch to stimulate Rho-dependent termination in the mgtA leader region in response to Mg(2+) availability. Unlike Rho-dependent terminators described previously, where termination occurs at multiple pause sites, there is a single site of transcription termination directed by Rho in the mgtA leader. Our data suggest that Rho-dependent termination events that are subject to regulation may require elements distinct from those operating at constitutive Rho-dependent terminators.
    Proceedings of the National Academy of Sciences 04/2014; · 9.81 Impact Factor

Full-text

View
0 Downloads
Available from