Bacterial transcription terminators: the RNA 3'-end chronicles.

Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 03/2011; 412(5):793-813. DOI: 10.1016/j.jmb.2011.03.036
Source: PubMed

ABSTRACT The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this chapter, we review both computational and experimental aspects of de novo RNA sequence design. We give an overview of currently available design software and their limitations, and discuss the necessary setup to experimentally validate proper function in vitro and in vivo. We focus on transcription-regulating riboswitches, a task that has just recently lead to first successful designs of such RNA elements. © 2015 Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetically encodable RNA devices that directly detect small molecules in the cellular environment are of increasing interest for a variety of applications including live cell imaging and synthetic biology. Riboswitches are naturally occurring sensors of intracellular metabolites, primarily found in the bacterial mRNA leaders and regulating their expression. These regulatory elements are generally composed of two domains: an aptamer that binds a specific effector molecule and an expression platform that informs the transcriptional or translational machinery. While it was long established that riboswitch aptamers are modular and portable, capable of directing different output domains including ribozymes, switches, and fluorophore-binding modules, the same has not been demonstrated until recently for expression platforms. We have engineered and validated a set of expression platforms that regulate transcription through a secondary structural switch that can host a variety of different aptamers, including those derived through in vitro selection methods, to create novel chimeric riboswitches. These synthetic switches are capable of a highly specific regulatory response both in vitro and in vivo. Here we present the methodology for the design and engineering of chimeric switches using biological expression platforms. © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rho is a ring-shaped, ATP-fueled motor essential for remodeling transcriptional complexes and R-loops in bacteria. Despite years of research on this fundamental model helicase, key aspects of its mechanism of translocation remain largely unknown. Here, we used single-molecule manipulation and fluorescence methods to directly monitor the dynamics of RNA translocation by Rho. We show that the efficiency of Rho activation is strongly dependent on the force applied on the RNA but that, once active, Rho is able to translocate against a large opposing force (at least 7 pN) by a mechanism involving 'tethered tracking'. Importantly, the ability to directly measure dynamics at the single-molecule level allowed us to determine essential motor properties of Rho. Hence, Rho translocates at a rate of ∼56 nt per second under our experimental conditions, which is 2-5 times faster than velocities measured for RNA polymerase under similar conditions. Moreover, the processivity of Rho (∼62 nt at a 7 pN opposing force) is large enough for Rho to reach termination sites without dissociating from its RNA loading site, potentially increasing the efficiency of transcription termination. Our findings unambiguously establish 'tethered tracking' as the main pathway for Rho translocation, support 'kinetic coupling' between Rho and RNA polymerase during Rho-dependent termination, and suggest that forces applied on the nascent RNA transcript by cellular substructures could have important implications for the regulation of transcription and its coupling to translation in vivo. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 02/2015; 43(1). DOI:10.1093/nar/gkv085 · 8.81 Impact Factor


Available from