Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice.

System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
PLoS ONE (Impact Factor: 3.73). 01/2011; 6(3):e18004. DOI: 10.1371/journal.pone.0018004
Source: PubMed

ABSTRACT Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dioxin levels in the breast milk of mothers residing near a contaminated former airbase in Vietnam remain much higher than in unsprayed areas, suggesting high perinatal dioxin exposure for their infants. The present study investigated the association of perinatal dioxin exposure with autistic traits in 153 3-year-old children living in a contaminated area in Vietnam. The children were followed up from birth using the neurodevelopmental battery Bayley-III. The high-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposed groups (3.5 pg per g fat) showed significantly higher Autism Spectrum Rating Scale (ASRS) scores for both boys and girls than the mild-TCDD exposed groups, without differences in neurodevelopmental scores. In contrast, the high total dioxin-exposed group, indicated by polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs)-the toxic equivalents (TEQ) levels17.9 pg-TEQ per g fat, had significantly lower neurodevelopmental scores than the mild-exposed group in boys, but there was no difference in the ASRS scores. The present study demonstrates a specific impact of perinatal TCDD on autistic traits in childhood, which is different from the neurotoxicity of total dioxins (PCDDs/Fs).Molecular Psychiatry advance online publication, 18 March 2014; doi:10.1038/mp.2014.18.
    Molecular psychiatry 03/2014; · 15.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition.
    Behavioural brain research 11/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During multiple sclerosis (MS) inflammatory attacks, and in subsequent clinical recovery phases, immune cells contribute to neuronal and oligodendroglial cell survival and tissue repair by secreting growth factors. Animal studies showed that growth factors also play a substantial role in regulating synaptic plasticity, and namely in long-term potentiation (LTP). LTP could drive clinical recovery in relapsing patients by restoring the excitability of denervated neurons. We recently reported that maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and that the platelet-derived growth factor (PDGF) may play a key role in its regulation. We also reported that a Hebbian form of LTP-like cortical plasticity, explored by paired associative stimulation (PAS), correlates with clinical recovery from a relapse in MS. Here, we explored the role of PDGF in clinical recovery and in adaptive neuroplasticity in relapsing-remitting MS (RR-MS) patients. We found a correlation between the cerebrospinal fluid (CSF) PDGF concentrations and the extent of clinical recovery after a relapse, as full recovery was more likely observed in patients with high PDGF concentrations and poor recovery in subjects with low PDGF levels. Consistently with the idea that PDGF-driven synaptic plasticity contributes to attenuate the clinical consequences of tissue damage in RR-MS, we also found a striking correlation between CSF levels of PDGF and the amplitude of LTP-like cortical plasticity explored by PAS. CSF levels of fibroblast growth factor, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor did not correlate with clinical recovery nor with measures of synaptic transmission and plasticity.
    Neuromolecular medicine 03/2014; · 5.00 Impact Factor

Full-text (4 Sources)

Available from
Jun 4, 2014