Mouse and human neutrophils induce anaphylaxis.

Institut Pasteur, Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Paris, France.
The Journal of clinical investigation (Impact Factor: 15.39). 03/2011; 121(4):1484-96. DOI:10.1172/JCI45232
Source: PubMed

ABSTRACT Anaphylaxis is a life-threatening hyperacute immediate hypersensitivity reaction. Classically, it depends on IgE, FcεRI, mast cells, and histamine. However, anaphylaxis can also be induced by IgG antibodies, and an IgG1-induced passive type of systemic anaphylaxis has been reported to depend on basophils. In addition, it was found that neither mast cells nor basophils were required in mouse models of active systemic anaphylaxis. Therefore, we investigated what antibodies, receptors, and cells are involved in active systemic anaphylaxis in mice. We found that IgG antibodies, FcγRIIIA and FcγRIV, platelet-activating factor, neutrophils, and, to a lesser extent, basophils were involved. Neutrophil activation could be monitored in vivo during anaphylaxis. Neutrophil depletion inhibited active, and also passive, systemic anaphylaxis. Importantly, mouse and human neutrophils each restored anaphylaxis in anaphylaxis-resistant mice, demonstrating that neutrophils are sufficient to induce anaphylaxis in mice and suggesting that neutrophils can contribute to anaphylaxis in humans. Our results therefore reveal an unexpected role for IgG, IgG receptors, and neutrophils in anaphylaxis in mice. These molecules and cells could be potential new targets for the development of anaphylaxis therapeutics if the same mechanism is responsible for anaphylaxis in humans.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Stimulatory IgG receptors (FcγRs) on bone marrow-derived cells contribute to the pathogenesis of several autoimmune and inflammatory disorders. Monoclonal antibodies that block FcγRs might suppress these diseases, but they can induce anaphylaxis. We wanted to determine whether a rapid desensitization approach can safely suppress IgG/FcγR-mediated anaphylaxis. Mice were injected with serially increasing doses of 2.4G2, a rat mAb that blocks the inhibitory FcγR, FcγRIIb, and the stimulatory receptor, FcγRIII. Rectal temperature was used to detect the development of anaphylaxis. Passive and active IgG-mediated anaphylaxis were evaluated in mice that had been rapidly desensitized with 2.4G2 or mock-desensitized in mice in which monocyte/macrophages, basophils, or neutrophils had been depleted or desensitized and in mice in which FcγRI, FcγRIII, and/or FcγRIV had been deleted or blocked. Rapid desensitization with 2.4G2 prevented 2.4G2-induced shock and completely suppressed IgG-mediated anaphylaxis. Rapid desensitization of ovalbumin-sensitized mice with 2.4G2 was safer and more effective than rapid desensitization with ovalbumin. 2.4G2 treatment completely blocked FcγRIII and removed most FcγRI and FcγRIV from nucleated peripheral blood cells. Because IgG2a-mediated anaphylaxis was partially FcγRI and FcγRIV dependent, the effects of 2.4G2 on FcγRI and FcγRIV were probably crucial for its complete inhibition of IgG2a-mediated anaphylaxis. IgG2a-mediated anaphylaxis was partially inhibited by depletion or desensitization of monocyte/macrophages, basophils, or neutrophils. IgG-mediated anaphylaxis can be induced by ligation of FcγRI, FcγRIII, or FcγRIV on monocycte/macrophages, basophils, or neutrophils and can be safely suppressed by rapid desensitization with anti-FcγRII/RIII mAb. A similar approach may safely suppress other FcγR-dependent immunopathology.
    The Journal of allergy and clinical immunology 10/2013; · 12.05 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Administration of the influenza vaccination to patients with an egg allergy is major health concern. Contaminating egg antigens occasionally induce severe anaphylactic shock in these patients following administration of the vaccination; therefore, the development of a safer vaccination is needed. In the present study, we investigated whether a mixture of four newly and previously generated anti-ovalbumin (OVA) IgA monoclonal antibodies (mAbs) could inhibit both anaphylactic shock upon a subcutaneous OVA challenge and subsequent further sensitization against OVA in passively anti-OVA IgE-sensitized mice and actively sensitized mice with an injection of OVA. The prevention of anaphylaxis by anti-OVA IgA mAbs was suggested to be mediated through the inhibition of OVA binding to allergenic antibodies such as anti-OVA IgE on mast cells and deceleration of the rate of OVA penetration from the injected site into the systemic circulation. Anti-OVA IgA mAbs inhibited further sensitization against OVA in mice actively sensitized with OVA, but did not affect sensitization against the unrelated antigen, phosphorylcholine-keyhole limpet hemocyanin co-injected with OVA. Our findings indicate that adding the anti-egg antigen IgA to the influenza vaccine should reduce not only the risk of inducing anaphylactic shock, but also undesired further sensitization against egg antigens following the vaccination without affecting the intended beneficial effect of the vaccine, namely the upregulation of immune responses to influenza viruses.
    Immunologic Research 12/2013; · 2.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
    International immunopharmacology 11/2013; · 2.21 Impact Factor

Full-text (2 Sources)

Available from
Sep 2, 2013