Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.

Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02912, USA.
Journal of Neural Engineering (Impact Factor: 3.42). 03/2011; 8(2):025027. DOI: 10.1088/1741-2560/8/2/025027
Source: PubMed

ABSTRACT The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of neural prostheses over the past few decades has produced a number of clinically relevant brain-machine interfaces (BMIs), such as the cochlear prostheses and deep brain stimulators. Current research pursues the restoration of communication or motor function to individuals with neurological disorders. Efforts in the field, such as the BrainGate trials, have already demonstrated that such interfaces can enable humans to effectively control external devices with neural signals. However, a number of significant issues regarding BMI performance, device capabilities, and surgery must be resolved before clinical use of BMI technology can become widespread. This chapter reviews challenges to clinical translation and discusses potential solutions that have been reported in recent literature, with focuses on hardware reliability, state-of-the-art decoding algorithms, and surgical considerations during implantation.
    International Review of Neurobiology 01/2012; 107:137-60. DOI:10.1016/B978-0-12-404706-8.00008-5 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation.
    Biomaterials 06/2014; DOI:10.1016/j.biomaterials.2014.05.084 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A goal of brain-computer interface research is to develop fast and reliable means of communication for individuals with paralysis and anarthria. We evaluated the ability of an individual with incomplete locked-in syndrome enrolled in the BrainGate Neural Interface System pilot clinical trial to communicate using neural point-and-click control. A general-purpose interface was developed to provide control of a computer cursor in tandem with one of two on-screen virtual keyboards. The novel BrainGate Radial Keyboard was compared to a standard QWERTY keyboard in a balanced copy-spelling task. The Radial Keyboard yielded a significant improvement in typing accuracy and speed-enabling typing rates over 10 correct characters per minute. The participant used this interface to communicate face-to-face with research staff by using text-to-speech conversion, and remotely using an internet chat application. This study demonstrates the first use of an intracortical brain-computer interface for neural point-and-click communication by an individual with incomplete locked-in syndrome.
    Neurorehabilitation and neural repair 11/2014; 29(5). DOI:10.1177/1545968314554624 · 4.62 Impact Factor