Article

Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis.

Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
Science (Impact Factor: 31.48). 03/2011; 332(6026):243-7. DOI: 10.1126/science.1201475
Source: PubMed

ABSTRACT Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4-expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into adipose tissue by an integrin-dependent process and reconstitute AAMs through an IL-4- or IL-13-dependent process. Mice fed a high-fat diet develop increased body fat, impaired glucose tolerance, and insulin resistance in the absence of eosinophils, and helminth-induced adipose tissue eosinophilia enhances glucose tolerance. Our results suggest that eosinophils play an unexpected role in metabolic homeostasis through maintenance of adipose AAMs.

0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group 2 innate lymphoid cells (ILC2s) play critical roles in anti-helminth immunity, airway epithelial repair, and metabolic homeostasis. Recently, these cells have also emerged as key players in the development of allergic inflammation at multiple barrier surfaces. ILC2s arise from common lymphoid progenitors in the bone marrow, are dependent on the transcription factors RORα, GATA3, and TCF-1, and produce the type 2 cytokines interleukin (IL)-4, IL-5, IL-9, and/or IL-13. The epithelial cell-derived cytokines IL-25, IL-33, and TSLP regulate the activation and effector functions of ILC2s, and recent studies suggest that their responsiveness to these cytokines and other factors may depend on their tissue environment. In this review, we focus on recent advances in our understanding of the various factors that regulate ILC2 function in the context of immunity, inflammation, and tissue repair across multiple organ systems. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
    Cold Spring Harbor perspectives in biology 01/2015; 7(5). DOI:10.1101/cshperspect.a016337 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a major risk factor for metabolic disease, with white adipose tissue (WAT) inflammation emerging as a key underlying pathology. Alongside its major role in energy storage, WAT is an important endocrine organ, producing many bioactive molecules, termed adipokines, which not only serve as regulators of systemic metabolism, but also possess immunoregulatory properties. Furthermore, WAT contains a unique immune cell repertoire, including an accumulation of leukocytes that are rare in other locations. These include alternatively activated macrophages, invariant natural killer T cells, and regulatory T cells. Disruption of resident adipose leukocyte homeostasis contributes to obesity associated inflammation and consequent metabolic disorder. Despite many recent advances in this new field of immuno-metabolism, fundamental questions of why and how inflammation arises as obesity develops are not yet fully understood. Exploring the distinct immune system of adipose tissue is fundamental to our understanding of the endocrine as well as immune systems. In this review, we discuss the roles of adipose tissue leukocytes in the transition to obesity and progression of inflammation, and highlight potential anti-inflammatory therapies for combating obesity-related pathology.
    Journal of Endocrinology 09/2014; 223(2). DOI:10.1530/JOE-13-0516 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.
    Baillière&#x027 s Best Practice and Research in Clinical Gastroenterology 08/2014; 28(4). DOI:10.1016/j.bpg.2014.07.002 · 3.28 Impact Factor