Blocking Fas ligand on leukocytes attenuates kidney ischemia-reperfusion injury.

Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Journal of the American Society of Nephrology (Impact Factor: 9.47). 03/2011; 22(4):732-42. DOI: 10.1681/ASN.2010010121
Source: PubMed

ABSTRACT Inflammation contributes to the pathogenesis of ischemic acute kidney injury (AKI), and T cells mediate the early phase of ischemia-reperfusion injury (IRI). The Fas/Fas ligand (FasL) pathway modulates the balance of T cell subsets in the peripheral circulation as well as multiple inflammatory responses, suggesting that FasL may mediate ischemic AKI. Here, we induced bilateral renal IRI in mice bearing a loss-of-function mutation of FasL (the gld mutation) and in wild-type mice. Compared with wild-type mice, serum creatinine was lower in gld mice (1.4 ± 0.9 mg/dl versus 2.6 ± 0.4) at 24 hours after IRI (P<0.05). In addition, gld mice had fewer TNF-α-producing T lymphocytes in the kidneys and renal lymph nodes. Furthermore, pharmacologic blockade of FasL protected the kidneys of wild-type mice from IRI. Analysis of bone marrow chimeric mice suggested that the pathogenic effect of FasL involves leukocytes; reconstitution of wild-type mice with gld splenocytes attenuated IRI. In contrast, reconstitution of gld mice with wild-type splenocytes enhanced IRI. These data demonstrate that FasL, particularly on leukocytes, mediates ischemic AKI.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The immune system is among the key pathogenic factors in acute kidney injury (AKI). Various immune cells, including dendritic cells, natural killer T cells, T and B lymphocytes, neutrophils and macrophages are involved. Conventional CD4+ lymphocytes are well established to participate in early injury, and CD4+CD25+FoxP3 regulatory T cells are protective and can accelerate repair. A newly identified kidney T cell receptor + CD4-CD8- (double-negative) T cell has complex functions, including potentially anti-inflammatory roles in AKI. In this mini review, we summarize the data on the role of lymphocytes in AKI and set the stage for further mechanistic studies as well as interventions to improve outcomes. © 2014 S. Karger AG, Basel.
    Nephron Clinical Practice 01/2014; 127(1-4):51-5. DOI:10.1159/000363719 · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemia/reperfusion (I/R) is one of the most common causes of acute kidney injury. Reactive oxygen species have been recognized to be an important contributor to the pathogenesis of I/R injury. We hypothesize that a non-peptidyl low molecular weight radical scavenger (IAC) therapy may counteract this factor, ultimately providing some protection after acute phase renal I/R injury. The aim of this preliminary study was to assess the ability of IAC to reduce acute kidney injury in C57BL/6 mice after 30-minute of bilateral ischemia followed by reperfusion. The rise in serum creatinine level was higher in C57BL/6 control mice after I/R when compared to IAC (1 mg)-treated mice. Control mice showed greater body weight loss compared to IAC-treated mice, and at pathology, reduced signs of tubular necrosis were also evident in IAC-treated mice. These preliminary evidences lay the basis for more comprehensive studies on the positive effects of IAC as a complementary therapeutic approach for acute phase renal I/R injury.
    SpringerPlus 01/2014; 3:158. DOI:10.1186/2193-1801-3-158
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated cell death (RCD) is either immunologically silent or immunogenic. RCD in parenchymal cells may lead to the release of damage- associated molecular patterns that drive both tissue inflammation and the activation of further pathways of RCD. Following an initial event of regulated necrosis, RCD and inflammation can induce each other and drive a local auto-amplification loop that leads to exaggerated cell death and inflammation. In this Opinion article, we propose that such crosstalk between pro-inflammatory and RCD pathways has pathophysiological relevance in solid organ failure, transplantation and cancer. In our opinion, clinicians should not only prescribe immunosuppressive treatments to disrupt this circuit, but also implement the neglected therapeutic option of adding compounds that interfere with RCD.
    Nature Reviews Immunology 10/2014; advance online publication(11). DOI:10.1038/nri3743 · 33.84 Impact Factor