Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids.

Institutes of Systematic Botany, University of Zürich and Zürich-Basel Plant Science Center, CH-8008 Zurich, Switzerland.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2011; 108(14):5696-701. DOI: 10.1073/pnas.1013313108
Source: PubMed

ABSTRACT The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators' sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP Δ(9) and a 16:0-ACP Δ(4) desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flax (Linum usitatissimum L.) is an important crop with many characteristic features such as its abundant essential ω-3 fatty acids for human nutrition. Fatty acid (FA) biosynthesis in plants, including flax, involves several consecutive steps governed by different gene families. Using in silico gene mining and comparative analysis, genome-wide gene identification and characterization were performed for six gene families related to FA biosynthesis, including KAS, SAD, FAD, KCS and FAT. We identified 91 FA-related genes from flax cv. CDC Bethune genome, from which seven previously cloned genes were validated. The newly identified 84 FA-related genes include 14 novel genes from the KAS family, two from the SAD family, 13 from the FAD2 family, three from the FAD3 family, 38 from the KCS family and 14 from the FAT family. Out of the 91 genes identified, 88 were duplicated as a consequence of recent whole genome duplication events, in which 13 FAD2 genes were hypothesized to have evolved from tandem gene duplication events followed by a whole genome duplication event and, more recently, by a single gene deletion. The six gene families described here are highly conserved in plants and have diverged anciently. These newly identified flax genes will be a useful resource for further research on FA gene cloning and expression, QTL identification, marker development and marker-assisted selection.
    Journal of Proteomics & Bioinformatics 10/2014; 7(10):310-326.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys).Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework.It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history.Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic.
    New Phytologist 12/2014; · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.
    Ecology and Evolution 12/2014; · 1.66 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014