Article

Decompressive craniectomy in diffuse traumatic brain injury.

Department of Intensive Care, Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia.
New England Journal of Medicine (Impact Factor: 54.42). 03/2011; 364(16):1493-502. DOI: 10.1056/NEJMoa1102077
Source: PubMed

ABSTRACT It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure.
From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months.
Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%).
In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).

0 Bookmarks
 · 
293 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Management of traumatic brain injury (TBI) is focused on preventing secondary brain injury. Remote ischemic conditioning (RIC) is an established treatment modality that has been shown to improve patient outcomes secondary to inflammatory insults. The aim of our study was to assess whether RIC in trauma patients with severe TBI could reduce secondary brain injury. This prospective consented interventional trial included all TBI patients admitted to our Level 1 trauma center with an intracranial hemorrhage and a Glasgow Coma Scale (GCS) score of 8 or lower on admission. In each patient, four cycles of RIC were performed within 1 hour of admission. Each cycle consisted of 5 minutes of controlled upper limb (arm) ischemia followed by 5 minutes of reperfusion using a blood pressure cuff. Serum biomarkers of acute brain injury, S-100B, and neuron-specific enolase (NSE) were measured at 0, 6, and 24 hours. Outcome measure was reduction in the level of serum biomarkers after RIC. A total of 40 patients (RIC, 20; control, 20) were enrolled. The mean (SD) age was 46.15 (18.64) years, the median GCS score was 8 (interquartile range, 3-8), and the median head Abbreviated Injury Scale (AIS) score was 3 (interquartile range, 3-5), and there was no difference between the RIC and control groups in any of the baseline demographics or injury characteristics including the type and size of intracranial bleed or skull fracture patterns. There was no difference in the 0-hour S-100B (p = 0.9) and NSE (p = 0.72) level between the RIC and the control group. There was a significant reduction in the mean levels of S-100B (p = 0.01) and NSE (p = 0.04) at 6 hours and 24 hours in comparison with the 0-hour level in the RIC group. This study showed that RIC significantly decreased the standard biomarkers of acute brain injury in patients with severe TBI. Our study highlights the novel therapeutic role of RIC for preventing secondary brain insults in TBI patients. Prospective interventional study, level II.
    Journal of Trauma and Acute Care Surgery 03/2015; DOI:10.1097/TA.0000000000000584 · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased intracranial pressure (ICP) is associated with worse outcome after traumatic brain injury (TBI). The current guidelines and management strategies are aimed at maintaining adequate cerebral perfusion pressure and treating elevated ICP. Despite controversies, ICP monitoring is important particularly after severe TBI to guide treatment and in developed countries is accepted as a standard of care. We provide a narrative review of the recent evidence for the use of ICP monitoring and management of ICP in pediatric TBI.
    Journal of Pediatric Neurosciences 09/2014; 9(3):207-15. DOI:10.4103/1817-1745.147572
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lumbar puncture is performed routinely for diagnostic and therapeutic purposes in idiopathic intracranial hypertension, despite lumbar puncture being classically contraindicated in the setting of raised intracranial pressure. We report the case of a 30-year-old female with known idiopathic intracranial hypertension who had cerebellar tonsillar herniation following therapeutic lumbar puncture. Management followed guidelines regarding treatment of traumatic intracranial hypertension, including rescue decompressive craniectomy. We hypothesize that the changes in brain compliance that are thought to occur in the setting of idiopathic intracranial hypertension are protective against further neuronal injury due to axonal stretch following decompressive craniectomy.
    01/2015; 2015:895035. DOI:10.1155/2015/895035

Full-text (2 Sources)

Download
101 Downloads
Available from
May 22, 2014