FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR.

Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA.
Nature (Impact Factor: 42.35). 03/2011; 471(7339):523-6. DOI: 10.1038/nature09870
Source: PubMed

ABSTRACT Human lung adenocarcinomas with activating mutations in EGFR (epidermal growth factor receptor) often respond to treatment with EGFR tyrosine kinase inhibitors (TKIs), but the magnitude of tumour regression is variable and transient. This heterogeneity in treatment response could result from genetic modifiers that regulate the degree to which tumour cells are dependent on mutant EGFR. Through a pooled RNA interference screen, we show that knockdown of FAS and several components of the NF-κB pathway specifically enhanced cell death induced by the EGFR TKI erlotinib in EGFR-mutant lung cancer cells. Activation of NF-κB through overexpression of c-FLIP or IKK (also known as CFLAR and IKBKB, respectively), or silencing of IκB (also known as NFKBIA), rescued EGFR-mutant lung cancer cells from EGFR TKI treatment. Genetic or pharmacologic inhibition of NF-κB enhanced erlotinib-induced apoptosis in erlotinib-sensitive and erlotinib-resistant EGFR-mutant lung cancer models. Increased expression of the NF-κB inhibitor IκB predicted for improved response and survival in EGFR-mutant lung cancer patients treated with EGFR TKI. These data identify NF-κB as a potential companion drug target, together with EGFR, in EGFR-mutant lung cancers and provide insight into the mechanisms by which tumour cells escape from oncogene dependence.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings.
    02/2015; 4(1):67-81. DOI:10.3978/j.issn.2218-6751.2014.11.06
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.
  • [Show abstract] [Hide abstract]
    ABSTRACT: NSCLC patients with mutations in epidermal growth factor receptor (EGFR) gene have dramatic responses with the EGFR tyrosine kinase inhibitors (TKI) in the majority of patients. However, all patients will eventually present progression of disease because of both primary and acquired resistance to EGFR TKI. In the recent years several studies have identified mechanisms involved in primary and secondary resistance to EGFR TKI treatment that can also be potential therapeutic strategies, although up to 30% of cases of acquired resistance to EGFR TKI are still unexplained. In this review we describe the mechanisms of resistance to EGFR TKIs in NSCLC patients that have been discovered and potential therapeutic strategies to overcome EGFR TKI resistance. Additionally we highlight the importance of performing additional biopsies not only at time of acquired resistance to EGFR TKI but also immediately after initiation of therapy to discover the remaining unknown mechanisms of acquired resistance to EGFR TKI as well as the underlying molecular basis of the heterogeneity in response to EGFR TKI.
    06/2013; 2(3):226-37. DOI:10.3978/j.issn.2218-6751.2013.03.09