Africa needs climate data to fight disease.

Columbia University, Palisades, New York 10964, USA.
Nature (Impact Factor: 38.6). 03/2011; 471(7339):440-2. DOI: 10.1038/471440a
Source: PubMed

ABSTRACT Madeleine C. Thomson and colleagues call on climate and health
researchers, policy-makers and practitioners to work together to tackle
infectious diseases.

1 Bookmark
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is re-emerging in Anhui Province, China after a decade long' low level of endemicity. The number of human cases has increased rapidly since 2000 and reached its peak in 2006. That year, the malaria cases accounted for 54.5% of total cases in mainland China. However, the spatial and temporal patterns of human cases and factors underlying the re-emergence remain unclear. We established a database containing 20 years' (1990-2009) records of monthly reported malaria cases and meteorological parameters. Spearman correlations were used to assess the crude association between malaria incidence and meteorological variables, and a polynomial distributed lag (PDL) time-series regression was performed to examine contribution of meteorological factors to malaria transmission in three geographic regions (northern, mid and southern Anhui Province), respectively. Then, a two-year (2008-2009) prediction was performed to validate the PDL model that was created by using the data collected from 1990 to 2007. We found that malaria incidence decreased in Anhui Province in 1990s. However, the incidence has dramatically increased in the north since 2000, while the transmission has remained at a relatively low level in the mid and south. Spearman correlation analyses showed that the monthly incidences of malaria were significantly associated with temperature, rainfall, relative humidity, and the multivariate El Niño/Southern Oscillation index with lags of 0-2 months in all three regions. The PDL model revealed that only rainfall with a 1-2 month lag was significantly associated with malaria incidence in all three regions. The model validation showed a high accuracy for the prediction of monthly incidence over a 2-year predictive period. Malaria epidemics showed a high spatial heterogeneity in Anhui Province during the 1990-2009 study periods. The change in rainfall drives the reemergence of malaria in the northern Anhui Province.
    PLoS ONE 01/2012; 7(8):e43686. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrition is affected by numerous environmental and societal causes. This paper starts with a simple framework based on three domains: nutritional quality, economic viability, and environmental sustainability, and calls for an integrated approach in research to simultaneously account for all three. It highlights limitations in the current understanding of each domain, and how they influence one another. Five research topics are identified: measuring the three domains (nutritional quality, economic viability, environmental sustainability); modeling across disciplines; furthering the analysis of food systems in relation to the three domains; connecting climate change and variability to nutritional quality; and increasing attention to inequities among population groups in relation to the three domains. For an integrated approach to be developed, there is a need to identify and disseminate available metrics, modeling techniques, and tools to researchers, practitioners, and policy makers. This is a first step so that a systems approach that takes into account potential environmental and economic trade-offs becomes the norm in analyzing nutrition and food-security patterns. Such an approach will help fill critical knowledge gaps and will guide researchers seeking to define and address specific research questions in nutrition in their wider socioeconomic and environmental contexts.
    Annals of the New York Academy of Sciences 10/2014; · 4.38 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014