Spotlight on metabolic remodelling in heart failure.

Department of Cardiothoracic Surgery, University of Jena, 07747 Jena, Germany.
Cardiovascular Research (Impact Factor: 5.81). 03/2011; 90(2):191-3. DOI: 10.1093/cvr/cvr077
Source: PubMed
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: Heart failure (HF) with left ventricular systolic dysfunction (LVSD) is associated with a shift in substrate utilization and a compromised energetic state. Whether these changes are connected with mitochondrial dysfunction is not known. We hypothesized that the cardiac phenotype in LVSD could be caused by reduced mitochondrial oxidative phosphorylation (OXPHOS) capacity and reduced mitochondrial creatine kinase (miCK) capacity. The study aim was to test mitochondrial OXPHOS capacity in LVSD myocardium compared with OXPHOS capacity in a comparable patient group without LVSD. METHODS AND RESULTS: Myocardial biopsies were obtained from the left ventricle during cardiac valve or left ventricular assist device (LVAD) surgery. Patients were stratified according to left ventricular ejection fraction (LVEF) into LVSD (LVEF <45%, n = 14) or CONTROL (LVEF >45%, n = 15). Mitochondrial respiration was measured in muscle fibres with addition of non-fatty acid substrates or octanoyl-l-carnitine, a medium chain fatty acid (MCFA). The in situ enzyme capacity of miCK was determined from APD titrations in the presence or absence of creatine. Maximal OXPHOS capacity with non-fatty acid substrates was lower in the LVSD group compared with the CONTROL group (P ≤ 0.05). ADP sensitivity always increased significantly (P ≤ 0.05) with the addition of creatine, after which the sensitivity was highest (P ≤ 0.05) in LVSD compared with CONTROL. The stimulation of OXPHOS from octanoyl-l-carnitine titrations elicited ∼40% lower respiration in LVSD compared with CONTROL (P ≤ 0.05). CONCLUSION: Human LVSD is associated with markedly diminished OXPHOS capacity, particularly in MCFA oxidation. This offers a candidate mechanism for a compromised energetic state and decreased reliance on fatty acid utilization in HF.
    European Journal of Heart Failure 10/2012; · 5.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.
    Journal of Zhejiang University SCIENCE B 08/2013; 14(8):688-95. · 1.11 Impact Factor