Article

La matriz extracelular: morfología, función y biotensegridad (parte I)

ÁLVARO NARANJO, Tomás ; Noguera Salva, Rosa ; Fariñas Guerrero, Fernando, Revista Española de Patología, La matriz extracelular: morfología, función y biotensegridad (parte I), 2009, Vol. 42, n.º 4, p. 249-261 10/2009; DOI: 10.1016/S1699-8855(09)70192-8
Source: OAI

ABSTRACT La matriz extracelular (MEC) representa una red tridimensional que engloba todos los órganos, tejidos y células del organismo. Constituye un filtro biofísico de protección, nutrición e inervación celular y el terreno para la respuesta inmune, angiogénesis, fibrosis y regeneración tisular. Y representa el medio de transmisión de fuerzas mecánicas a la membrana basal, que a través de las integrinas soporta el sistema de tensegridad y activa los mecanismos epigenéticos celulares. La alteración de la MEC supone la pérdida de su función de filtro eficaz, nutrición, eliminación, denervación celular, pérdida de la capacidad de regeneración y cicatrización y alteración de la transmisión mecánica o mecanotransducción. También la pérdida del sustrato para una correcta respuesta inmune ante agentes infecciosos, tumorales y tóxicos. Los tumores son tejidos funcionales conectados y dependientes del microambiente. El microambiente tumoral, constituido por la MEC, células del estroma y la propia respuesta inmune, son determinantes de la morfología y clasificación tumoral, agresividad clínica, pronóstico y respuesta al tratamiento del tumor. Tanto en condiciones fisiológicas como patológicas, la comunicación recíproca entre células del estroma y el parénquima dirige la expresión génica. La capacidad oncogénica del estroma procede tanto de los fibroblastos asociados al tumor como de la celularidad de la respuesta inmune y la alteración de la tensegridad por la MEC. La transición epitelio-mesenquimal es el cambio que transforma una célula normal o «benigna» en «maligna». El citoesqueleto pseudomesenquimal otorga las propiedades de migración, invasión y diseminación. Y viceversa, el fenotipo maligno es reversible a través de la corrección de las claves que facilita el microambiente tumoral. Extracellular matrix (ECM) is a three-dimensional network that envelopes all the organs, tissues and cells of the body. A biophysical filter that provides protection, nutrition and cell innervation, it is the site for immune response, angiogenesis, fibrosis and tissue regeneration. It is also the transport medium for mechanical forces to the basal membrane through integrins that support the tensegrity system, activating cellular epigenetic mechanisms. The disruption of the ECM leads to a functional loss of nutrition, elimination, cell innervation, regenerative capacity and wound healing as well as alterations in mechanical transduction. This loss also disrupts the immune response to pathogens, tumour cells and toxins. Tumours are functionally connected tissues which depend on the microenvironment. This tumour microenvironment, made up of ECM, stromal cells and the immune response, determines the morphology and tumour histopathological classification, clinical behaviour, prognosis and immune response to the tumour. Both in physiological and pathological conditions, reciprocity in the communication between stromal and parenchymal cells determine gene expression. The oncogenic capacity of the stroma depends on tumour associated fibroblasts, immune system cellularity and disruption of tensegrity by ECM. Epithelial-mesenchymal transition is the change that transforms a normal or benign cell into a malignant cell. The «pseudo-mensenchymal» cytoskeleton is responsible for migration, invasion and dissemination, and vice-versa, the malignant phenotype is reversible through the correction of the microenvironmental factors that favour tumour growth. Noguera Salva, Rosa, Rosa.Noguera@uv.es

2 Followers
 · 
505 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Mixed fungal infections although undervalued, are more common than mentioned in the scientific literature. These infections have a poor prognosis for the patient.
    Revista Iberoamericana de Micología 07/2010; 27(3):140-143. DOI:10.1016/j.riam.2010.04.002 · 0.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering is a discipline that combines the principles of biology, engineering and materials to produce or replace tissues affected by disease. The basic idea of tissue engineering is relatively simple. Primary cells or stem cells are cultivated in a biodegradable scaffold, by a bioreactor for a period of time. Cells are stimulated to proliferate (and differentiate in the case of stem cells) to produce extracellular matrix (ECM). Once the implant has been carried out in vivo, the original scaffold is degraded without damage for the human body. In this work, is described the methodology for obtaining scaffolds with the technique of electrospinning for use in tissue engineering of the urethra. In order to obtain fibers were evaluated different systems solutions containing two polymers: poly (lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL). Also, various parameters were changed in the electrospinning machine, such as voltage, temperature, injection speed, distance between the capillary and the collector cylinder and several others. The fabricated scaffolds were subjected to various tests to determine their physicochemical properties. Therefore, the samples were observed by scanning electron microscope (SEM) to determine the existence of fibers and pore formation. The scaffold was subjected to in vitro degradation assays for five weeks, immersing the samples in Phosphate Buffered Saline (PBS, pH 7.4). At the end of the five weeks, the scaffold samples were also observed by SEM to determine whether there was a collapse in the fibers or the initial morphology was maintained. To determine if degradation was carried out via hydrolysis, tests of FT-IR were performed to determine that the ester bonds were susceptible to breaking, when they came in contact with the PBS solution. The hydrophilicity of a scaffold is a key factor to perform a cell culture, contact angle tests were performed to determine if the scaffold was hydrophilic or hydrophobic. For the mechanical properties of the three-dimensional (3D) support, tension tests were performed, and with the stress-strain curve obtained, was calculated the elastic modulus of the scaffold. DSC runs were also made in order to evaluate the thermal properties of scaffold, and thus determine if the mixture used was miscible or compatible.
    12/2014, Degree: Maestría en Ciencias, Supervisor: Dr. Fernando Hernández Sánchez; M.C Hugo Joel Carrillo Escalante

Preview

Download
123 Downloads
Available from