Article

Improved growth and anemia in HIV-infected African children taking cotrimoxazole prophylaxis.

MRC Clinical Trials Unit, London, United Kingdom.
Clinical Infectious Diseases (Impact Factor: 9.42). 04/2011; 52(7):953-6. DOI: 10.1093/cid/cir029
Source: PubMed

ABSTRACT The impact of cotrimoxazole (CTX) on growth and/or anemia was investigated in 541 human immunodeficiency virus-infected, antiretroviral therapy-naive Zambian children enrolled in the Children with HIV Antibiotic Prophylaxis trial. Compared with children randomized to receive placebo, children randomized to receive CTX had slower decreases in weight-for-age (P=.04) and height-for-age (P=.01), and greater increase in hemoglobin level (P=.01). These findings argue for expanded early CTX use.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Undernutrition in childhood is estimated to cause 3.1 million child deaths annually through a potentiating effect on common infectious diseases, such as pneumonia and diarrhea. In turn, overt and subclinical infections, and inflammation, especially in the gut, alter nutrient intake, absorption, secretion, diversion, catabolism, and expenditure.
    Food and nutrition bulletin 06/2014; 35(2 Suppl):S64-70. · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-trimoxazole (fixed-dose trimethoprim-sulfamethoxazole) prophylaxis administered before antiretroviral therapy (ART) reduces morbidity in children infected with the human immunodeficiency virus (HIV). We investigated whether children and adolescents receiving long-term ART in sub-Saharan Africa could discontinue co-trimoxazole. We conducted a randomized, noninferiority trial of stopping versus continuing daily open-label co-trimoxazole in children and adolescents in Uganda and Zimbabwe. Eligible participants were older than 3 years of age, had been receiving ART for more than 96 weeks, were using insecticide-treated bed nets (in malaria-endemic areas), and had not had Pneumocystis jirovecii pneumonia. Coprimary end points were hospitalization or death and adverse events of grade 3 or 4. A total of 758 participants were randomly assigned to stop or continue co-trimoxazole (382 and 376 participants, respectively), after receiving ART for a median of 2.1 years (interquartile range, 1.8 to 2.3). The median age was 7.9 years (interquartile range, 4.6 to 11.1), and the median CD4 T-cell percentage was 33% (interquartile range, 26 to 39). Participants who stopped co-trimoxazole had higher rates of hospitalization or death than those who continued (72 participants [19%] vs. 48 [13%]; hazard ratio, 1.64; 95% confidence interval [CI], 1.14 to 2.37; P = 0.007; noninferiority not shown). There was no evidence of variation across ages (P=0.93 for interaction). A total of 2 participants in the prophylaxis-stopped group (1%) died, as did 3 in the prophylaxis-continued group (1%). Most hospitalizations in the prophylaxis-stopped group were for malaria (49 events, vs. 21 in the prophylaxis-continued group) or infections other than malaria (53 vs. 25), particularly pneumonia, sepsis, and meningitis. Rates of adverse events of grade 3 or 4 were similar in the two groups (hazard ratio, 1.20; 95% CI, 0.83 to 1.72; P=0.33), but more grade 4 adverse events occurred in the prophylaxis-stopped group (hazard ratio, 2.04; 95% CI, 0.99 to 4.22; P=0.05), with anemia accounting for the largest number of events (12, vs. 2 with continued prophylaxis). Continuing co-trimoxazole prophylaxis after 96 weeks of ART was beneficial, as compared with stopping prophylaxis, with fewer hospitalizations for both malaria and infection not related to malaria. (Funded by the United Kingdom Medical Research Council and others; ARROW Current Controlled Trials number, ISRCTN24791884.).
    New England Journal of Medicine 01/2014; 370(1):41-53. · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: No trials have investigated routine laboratory monitoring for children with HIV, nor four-drug induction strategies to increase durability of first-line antiretroviral therapy (ART). METHODS: In this open-label parallel-group trial, Ugandan and Zimbabwean children or adolescents with HIV, aged 3 months to 17 years and eligible for ART, were randomly assigned in a factorial design. Randomisation was to either clinically driven monitoring or routine laboratory and clinical monitoring for toxicity (haematology and biochemistry) and efficacy (CD4 cell counts; non-inferiority monitoring randomisation); and simultaneously to standard three-drug or to four-drug induction first-line ART, in three groups: three-drug treatment (non-nucleoside reverse transcriptase inhibitor [NNRTI], lamivudine, abacavir; group A) versus four-drug induction (NNRTI, lamivudine, abacavir, zidovudine; groups B and C), decreasing after week 36 to three-drug NNRTI, lamivudine, plus abacavir (group B) or lamivudine, abacavir, plus zidovudine (group C; superiority ART-strategy randomisation). For patients assigned to routine laboratory monitoring, results were returned every 12 weeks to clinicians; for clinically driven monitoring, toxicity results were only returned for requested clinical reasons or if grade 4. Children switched to second-line ART for WHO stage 3 or 4 events or (routine laboratory monitoring only) age-dependent WHO CD4 criteria. Randomisation used computer-generated sequentially numbered tables incorporated securely within the database. Primary efficacy endpoints were new WHO stage 4 events or death for monitoring and change in CD4 percentage at 72 and 144 weeks for ART-strategy randomisations; the co-primary toxicity endpoint was grade 3 or 4 adverse events. Analysis was by intention to treat. This trial is registered, ISRCTN24791884. FINDINGS: 1206 children were randomly assigned to clinically driven (n=606) versus routine laboratory monitoring (n=600), and groups A (n=397), B (n=404), and C (n=405). 47 (8%) children on clinically driven monitoring versus 39 (7%) on routine laboratory monitoring had a new WHO stage 4 event or died (hazard ratio [HR] 1·13, 95% CI 0·73-1·73, p=0·59; non-inferiority criterion met). However, in years 2-5, rates were higher in children on clinically driven monitoring (1·3 vs 0·4 per 100 child-years, difference 0·99, 0·37-1·60, p=0·002). One or more grade 3 or 4 adverse events occurred in 283 (47%) children on clinically driven versus 282 (47%) on routine laboratory monitoring (HR 0·98, 0·83-1·16, p=0·83). Mean CD4 percentage change did not differ between ART groups at week 72 (16·5% [SD 8·6] vs 17·1% [8·5] vs 17·3% [8·0], p=0·33) or week 144 (p=0·69), but four-drug groups (B, C) were superior to three-drug group A at week 36 (12·4% [7·2] vs 14·1% [7·1] vs 14·6% [7·3], p<0·0001). Excess grade 3 or 4 events in groups B (one or more events reported by 157 [40%] children in A, 190 [47%] in B; HR [B:A] 1·32, 1·07-1·63) and C (218 [54%] children in C; HR [C:A] 1·58, 1·29-1·94; global p=0·0001) were driven by asymptomatic neutropenia in zidovudine-containing groups (B, C; 86 group A, 133 group B, 184 group C), but resulted in drug substitutions in only zero versus two versus four children, respectively. INTERPRETATION: NNRTI plus NRTI-based three-drug or four-drug ART can be given across childhood without routine toxicity monitoring; CD4 monitoring provided clinical benefit after the first year on ART, but event rates were very low and long-term survival high, suggesting ART rollout should take priority. CD4 benefits from four-drug induction were not durable, but three-NRTI long-term maintenance was immunologically and clinically similar to NNRTI-based ART and could be valuable during tuberculosis co-treatment.
    The Lancet 03/2013; 381(9875):1391-403. · 39.21 Impact Factor