Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver.

Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
Blood (Impact Factor: 9.78). 03/2011; 117(19):5215-23. DOI: 10.1182/blood-2010-10-313239
Source: PubMed

ABSTRACT Aged or damaged RBCs are effectively removed from the blood circulation by Kupffer cells in the liver, but little is known regarding the mechanism of the clearance process. Here we show that stabilin-1 and stabilin-2 in hepatic sinusoidal endothelial cells (HSECs) are critical in effectively clearing damaged RBCs in mouse liver. Damaged RBCs and phosphatidylserine (PS)-coated beads were effectively sequestered in the hepatic sinusoid regardless of the presence of Kupffer cells, suggesting a role for HSECs in PS-dependent sequestration of PS-exposed RBCs in the liver. HSECs mediate tethering of damaged RBCs in a PS-dependent manner via stabilin-1 and stabilin-2. In a sinusoid-mimicked coculture system consisting of macrophages layered over HSECs, there was significant enhancement of the phagocytic capacity of macrophages, and this was mediated by stabilin-1 and stabilin-2 in HSECs. Liver-specific knockdown of stabilin-1 and stabilin-2 inhibited the sequestration of damaged RBCs in the hepatic sinusoid and delayed the elimination of damaged cells in an in vivo animal model. Thus, the roles of stabilin-1 and stabilin-2 in hepatic sequestration of PS-exposed RBCs may represent a potential mechanism for the clearance of damaged RBCs by Kupffer cells and for the control of some pathologic conditions such as hemolytic anemia.


Available from: Mi-Yeon Jung, Apr 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main "antipodal" functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with "self" and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of "protective" autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
    Frontiers in Microbiology 11/2014; 5. DOI:10.3389/fmicb.2014.00559 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron homeostasis and macrophage biology are closely interconnected. On the one hand, iron exerts multiple effects on macrophage polarization and functionality. On the other hand, macrophages are central for mammalian iron homeostasis. The phagocytosis of senescent erythrocytes and their degradation by macrophages enable efficient recycling of iron and the maintenance of systemic iron balance. Macrophages express multiple molecules and proteins for the acquisition and utilization of iron and many of these pathways are affected by inflammatory signals. Of note, iron availability within macrophages has significant effects on immune effector functions and metabolic pathways within these cells. This review summarizes the physiological and pathophysiological aspects of macrophage iron metabolism and highlights its relevant consequences on immune function and in common diseases such as infection and atherosclerosis.
    Immunobiology 09/2014; 220(2). DOI:10.1016/j.imbio.2014.09.010 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Extracellular trypanosomes, causative agents of sleeping sickness and Nagana, threaten human and animal health throughout the world. Anemia is a hallmark feature of virtually every type of trypanosome infection. During the early phase of experimental murine trypanosomosis, acute anemia occurs as witnessed by a 50% reduction in red blood cells within a 48 hour time span. The acute nature of this phenomenon suggests the implication of a consumptive process such as erythrophagocytosis. However, due to the multiple significant drawbacks of the presently used phagocytosis techniques, this has never been straightforwardly demonstrated. Here we developed a new erythrophagocytosis assay based on the labeling of red blood cells with the acid-sensitive dye pHrodo. This assay unequivocally distinguishes erythrophagocytozing cells in vivo and in vitro via flow cytometry and fluorescent microscopy. Using this new assay, we show that the acute anemia during experimental trypanosomosis is a result of enhanced erythrophagocytosis by activated liver monocytic cells and neutrophils as well as by activated splenic macrophages. Moreover, the red blood cell membrane composition and stability are altered during the infection, priming them for enhanced clearance by the myeloid phagocytic system.
    PLoS neglected tropical diseases 03/2015; 9(2):e0003561. DOI:10.1371/journal.pntd.0003561 · 4.72 Impact Factor