Controlling the Stability and Reversibility of Micropillar Assembly by Surface Chemistry

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 03/2011; 133(14):5545-53. DOI: 10.1021/ja200241j
Source: PubMed

ABSTRACT For many natural and synthetic self-assembled materials, adaptive behavior is central to their function, yet the design of such systems has mainly focused on the static form rather than the dynamic potential of the final structure. Here we show that, following the initial evaporation-induced assembly of micropillars determined by the balance between capillarity and elasticity, the stability and reversibility of the produced clusters are highly sensitive to the adhesion between the pillars, as determined by their surface chemistry and further regulated by added solvents. When the native surface of the epoxy pillars is masked by a thin gold layer and modified with monolayers terminated with various chemical functional groups, the resulting effect is a graded influence on the stability of cluster formation, ranging from fully disassembled clusters to an entire array of stable clusters. The observed assembly stabilization effect parallels the order of the strengths of the chemical bonds expected to form by the respective monolayer end groups: NH(2) ≈ OH < COOH < SH. For each functional group, the stability of the clusters can be further modified by varying the carbon chain length of the monolayer molecules and by introducing solvents into the clustered samples, allowing even finer tuning as well as temporal control of disassembly. Using these features together with microcontact printing, we demonstrate straightforward patterning of the microstructured surfaces with clusters that can be erased and regenerated at will by the addition of appropriate solvents. Subtle modifications to surface and solvent chemistry provide a simple way to tune the balance between adhesion and elasticity in real time, enabling structures to be designed for dynamic, responsive behavior.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Using molecular dynamic simulations, we studied the equilibrium structure of an elastic nanotube filled with separated liquid droplets. When the filling of liquid droplets exceeded a certain critical ratio, the circular carbon nanotube was observed to be deformed into an elliptical one, associated with the coalescence of liquid droplets. We have proposed a theoretical model to explain such an abrupt structural deformation. Based on the competition between capillary and elastic energy, our theoretical model explained the collapse of the elastic tube very well and gave consistent predictions with the simulation results. The theoretical model was quite general and can be extended to other similar soft matter systems although it was originally deduced from the liquid-filled carbon nanotube systems.
    Soft Matter 01/2013; 9(41):9774. DOI:10.1039/c3sm51248g · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiols are widely utilized to functionalize metal nanoparticles, including ubiquitous citrate-stabilized gold nanoparticles (AuNPs), for fundamental studies and biomedical applications. For more than two decades, citrate-to-thiol ligand exchange has been used to introduce functionality to AuNPs in the 5-100 nm size regime. Contrary to conventional assumptions about the completion of ligand exchange processes and formation of a uniform self-assembled monolayer (SAM) on the NP surface, coadsorption of thiols with preadsorbed citrates as a mixed layer on AuNPs is demonstrated. Hydrogen bonding between carboxyl moieties primarily is attributed to the strong adsorption of citrate, leading to the formation of a stabilized network that is challenging to displace. In these studies, adsorbed citrates, probed by Fourier transform infrared and X-ray photoelectron spectroscopy (XPS) analyses, remain on the surface following thiol addition to the AuNPs, whereas acetoacetate anions are desorbed. XPS quantitative analysis indicates that the surface density of alkyl and aryl thiolates for AuNPs with an average diameter of ∼40 nm is 50-65% of the value of a close-packed SAM on Au(111). We present a detailed citrate/thiolate coadsorption model that describes this final mixed surface composition. Intermolecular interactions between weakly coordinated oxyanions, such as polyprotic carboxylic acids, can lead to enhanced stability of the metal-ligand interactions, and this needs to be considered in the surface modification of metal nanoparticles by thiols or other anchor groups.
    ACS Nano 01/2015; DOI:10.1021/nn506379m · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic materials that can sense changes in their surroundings and functionally respond by altering many of their physical characteristics are primed to be integral components of future "smart" technologies. A fundamental reason for the adaptability of biological organisms is their innate ability to convert environmental or chemical cues into mechanical motion and reconfiguration on both the molecular and macroscale. However, design and engineering of robust chemomechanical behavior in artificial materials has proven a challenge. Such systems can be quite complex and often require intricate coordination between both chemical and mechanical inputs and outputs, as well as the combination of multiple materials working cooperatively to achieve the proper functionality. It is critical to not only understand the fundamental behaviors of existing dynamic chemomechanical systems but also apply that knowledge and explore new avenues for design of novel materials platforms that could provide a basis for future adaptive technologies. In this Account, we explore the chemomechanical behavior, properties, and applications of hybrid-material surfaces consisting of environmentally sensitive hydrogels integrated within arrays of high-aspect-ratio nano- or microstructures. This bio-inspired approach, in which the volume-changing hydrogel acts as the "muscle" that reversibly actuates the microstructured "bones", is highly tunable and customizable. Although straightforward in concept, the combination of just these two materials (structures and hydrogel) has given rise to a far more complex set of actuation mechanisms and behaviors. Variations in how the hydrogel is physically integrated within the structure array provide the basis for three fundamental mechanisms of actuation, each with its own set of responsive properties and chemomechanical behavior. Further control over how the chemical stimulus is applied to the surface, such as with microfluidics, allows for generation of more precise and varied patterns of actuation. We also discuss the possible applications of these hybrid surfaces for chemomechanical manipulation of reactions, including the generation of chemomechanical feedback loops. Comparing and contrasting these many approaches and techniques, we aim to put into perspective their highly tunable and diverse capabilities but also their future challenges and impacts.
    Accounts of Chemical Research 11/2013; 47(2). DOI:10.1021/ar4001923 · 24.35 Impact Factor


Available from