Article

Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport.

Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
Current Atherosclerosis Reports (Impact Factor: 2.92). 03/2011; 13(3):257-65. DOI: 10.1007/s11883-011-0175-2
Source: PubMed

ABSTRACT Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-feces RCT, knockout of both HL and EL leaves RCT essentially unaffected. With respect to important individual steps of RCT, current data on the role of EL and HL in cholesterol efflux are not conclusive. Both enzymes increase hepatic selective cholesterol uptake; however, this does not translate into altered biliary cholesterol secretion, which is regarded the final step of RCT. Also, the impact of HL and EL on atherosclerosis is not clear cut; rather it depends on respective experimental conditions and chosen models. More mechanistic insights into the diverse biological properties of these enzymes are therefore required to firmly establish EL and HL as targets for the treatment of atherosclerotic cardiovascular disease.

1 Bookmark
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract BACKGROUND: Angiotensin II (AngII) participates in endothelial damage and inflammation, and accelerates atherosclerosis. Endothelial lipase (EL) is involved in the metabolism and clearance of high density lipoproteins (HDL), the serum levels of which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs). METHODS AND FINDINGS: HUVECs were cultured in vitro with different treatments as follows: 1) The control group without any treatment; 2) AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3) NF-κB activation inhibitor pyrrolidine dithiocarbamate (PDTC) pretreatment for 1 h before AngII treatment; and 4) mitogen-activated protein kinase (MAPK) p38 inhibitor (SB203580) pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. NF-kappa B (NF-κB) p65, MAPK p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were assayed by western blotting. The results showed that the protein levels of EL, NF-κB p65, MAPK p38, JNK, and p-ERK protein levels, in addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC) and the MAPK p38 inhibitor (SB203580) partially inhibited the effects of AngII on EL expression. CONCLUSION: AngII may upregulate EL protein expression via the NF-κB and MAPK signaling pathways.
    PLoS ONE 09/2014; 9(9). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Gastric cancer is one of the most common malignant tumors in the world. Finding effective diagnostic biomarkers in urine or serum would represent the most ideal solution to detecting gastric cancer during annual physical examination. This study was to evaluate the potential of endothelial lipase (EL) as a urinary biomarker for diagnosis of gastric cancer. METHODS: The expression levels of EL was measured using Western blotting and immunohistochemical staining experiments on (tissue, serum, and urine) samples of gastric cancer patients versus healthy people. We also checked the EL levels in the urine samples of other cancer types (lung, colon and rectum cancers) and benign lesions (gastritis and gastric leiomyoma) to check if EL was specific to gastric cancer. Result We observed a clear separation between the EL expression levels in the urine samples of 90 gastric cancer patients and of 57 healthy volunteers. It was approximately 9.9 fold average decrease of the EL expression levels in the urine samples of gastric cancer compared to the healthy controls (P <0.0001), achieving a 0.967 AUC value for the ROC (receiver operating characteristic) curve, demonstrating it's highly accurate as a diagnostic marker for gastric cancer. Interestingly, the expression levels of EL in tissue and serum samples were not nearly as discriminative as in urine samples (P=0.90 and P=0.79). In immunohistochemical experiments, positive expression of the EL protein was found in 67% (8/12) of gastric adjacent noncancerous and in 58% (7/12) of gastric cancer samples. There was no significant statistical in the expression levels of this protein between the gastric cancer and the matching noncancerous tissues (P =0.67). CONCLUSIONS: The urinary EL as a highly accurate gastric cancer biomarker that is potentially applicable to the general screening with high sensitivity and specificity. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4527331618757552.
    Diagnostic Pathology 03/2013; 8(1):45. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological and clinical studies have over the years established that dyslipidemia constitutes the main risk factor for atherosclerosis. The inverse correlation between HDL cholesterol (HDL-C) levels and coronary heart disease morbidity and mortality identified HDL-C as an alternative pharmacological target to LDL-C and a potential anti-atherosclerosis marker. However, more recent data reinforced the principle of 'HDL quality' in atherosclerosis that refers to the functionality of HDL particle, as defined by its protein and lipid content, rather than HDL-C levels in plasma. Since HDL functionality depends on the genes and proteins of the HDL metabolic pathway, its apoprotein composition may serve as a surrogate marker of atheroprotection. In this manuscript we review the atheroprotective properties of HDL in relation to the proteins of HDL metabolic pathway and discuss what HDL-associated genes and proteins may reveal about HDL functionality in the assessment of coronary risk.
    Expert Review of Cardiovascular Therapy 04/2014; 12(4):521-32.

Full-text (2 Sources)

View
28 Downloads
Available from
May 22, 2014