HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells.

Institute of Cell Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
Nature Neuroscience (Impact Factor: 14.98). 03/2011; 14(4):429-36. DOI: 10.1038/nn.2762
Source: PubMed

ABSTRACT Histone deacetylases (HDACs) are major epigenetic regulators. We show that HDAC1 and HDAC2 functions are critical for myelination of the peripheral nervous system. Using mouse genetics, we have ablated Hdac1 and Hdac2 specifically in Schwann cells, resulting in massive Schwann cell loss and virtual absence of myelin in mutant sciatic nerves. Expression of Sox10 and Krox20, the main transcriptional regulators of Schwann cell myelination, was greatly reduced. We demonstrate that in Schwann cells, HDAC1 and HDAC2 exert specific primary functions: HDAC2 activates the transcriptional program of myelination in synergy with Sox10, whereas HDAC1 controls Schwann cell survival by regulating the levels of active β-catenin.

  • [Show abstract] [Hide abstract]
    ABSTRACT: White matter injury is an important component of stroke pathology, but its pathophysiology and potential treatment remain relatively elusive and underexplored. We previously reported that after permanent middle cerebral artery occlusion (pMCAO), sodium butyrate (SB) and trichostatin A (TSA) induced neurogenesis via histone deacetylase (HDAC) inhibition in multiple ischemic brain regions in rats; these effects-which depended on activation of brain-derived neurotrophic factor (BDNF)-TrkB signaling-contributed to behavioral improvement. The present study found that SB or TSA robustly protected against ischemia-induced loss of oligodendrocytes detected by confocal microscopy of myelin basic protein (MBP) immunostaining in the ipsilateral subventricular zone (SVZ), striatum, corpus callosum, and frontal cortex seven days post-pMCAO. Co-localization of 5-bromo-2'-deoxyuridine (BrdU)(+) and MBP(+) cells after SB treatment suggested the occurrence of oligodendrogenesis. SB also strongly upregulated vascular endothelial growth factor (VEGF), which plays a major role in neurogenesis, angiogenesis, and functional recovery after stroke. These SB-induced effects were markedly suppressed by blocking the TrkB signaling pathway with K252a. pMCAO-induced activation of microglia (OX42(+)) and macrophages/monocytes (ED1(+))-which has been linked to white matter injury-was robustly suppressed by SB in a K252a-sensitive manner. In addition, SB treatment largely blocked caspase-3(+) and OX42(+) cells in ipsilateral brain regions. Our results suggest that HDAC inhibitor-mediated protection against ischemia-induced oligodendrocyte loss may involve multiple mechanisms including oligodendrogenesis, VEGF upregulation, anti-inflammation, and caspase-3 downregulation. Taken together, the results suggest that post-insult treatment with HDAC inhibitors is a rational strategy to mitigate white matter injury following ischemic stroke.
    American Journal of Translational Research 01/2014; 6(3):206-23. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroepithelial precursor cells of the vertebrate central nervous system either self-renew or differentiate into neurons, oligodendrocytes or astrocytes under the influence of a gene regulatory network that consists in transcription factors, epigenetic modifiers and microRNAs. Sox transcription factors are central to this regulatory network, especially members of the SoxB, SoxC, SoxD, SoxE and SoxF groups. These Sox proteins are widely expressed in neuroepithelial precursor cells and in newly specified, differentiating and mature neurons, oligodendrocytes and astrocytes and influence their identity, survival and development. They exert their effect predominantly at the transcriptional level but also have substantial impact on expression at the epigenetic and posttranscriptional levels with some Sox proteins acting as pioneer factors, recruiting chromatin-modifying and -remodelling complexes or influencing microRNA expression. They interact with a large variety of other transcription factors and influence the expression of regulatory molecules and effector genes in a cell-type-specific and temporally controlled manner. As versatile regulators with context-dependent functions, they are not only indispensable for central nervous system development but might also be instrumental for the development of reprogramming and cell conversion strategies for replacement therapies and for assisted regeneration after injury or degeneration-induced cell loss in the central nervous system.
    Cell and Tissue Research 06/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schwann cells, the myelinating glia of the peripheral nervous system (PNS), originate from multipotent neural crest cells that also give rise to other cells, including neurons, melanocytes, chondrocytes, and smooth muscle cells. The transcription factor Sox10 is required for peripheral glia specification. However, all neural crest cells express Sox10 and the mechanisms directing neural crest cells into a specific lineage are poorly understood. We show here that histone deacetylases 1 and 2 (HDAC1/2) are essential for the specification of neural crest cells into Schwann cell precursors and satellite glia, which express the early determinants of their lineage myelin protein zero (P0) and/or fatty acid binding protein 7 (Fabp7). In neural crest cells, HDAC1/2 induced expression of the transcription factor Pax3 by binding and activating the Pax3 promoter. In turn, Pax3 was required to maintain high Sox10 levels and to trigger expression of Fabp7. In addition, HDAC1/2 were bound to the P0 promoter and activated P0 transcription. Consistently, in vivo genetic deletion of HDAC1/2 in mouse neural crest cells led to strongly decreased Sox10 expression, no detectable Pax3, virtually no satellite glia, and no Schwann cell precursors in dorsal root ganglia and peripheral nerves. Similarly, in vivo ablation of Pax3 in the mouse neural crest resulted in strongly reduced expression of Sox10 and Fabp7. Therefore, by controlling the expression of Pax3 and the concerted action of Pax3 and Sox10 on their target genes, HDAC1/2 direct the specification of neural crest cells into peripheral glia.
    Journal of Neuroscience 04/2014; 34(17):6112-22. · 6.75 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014