Article

Cancer immunotherapy using recombinant Listeria monocytogenes Transition from bench to clinic

Research and Development, Advaxis Inc., North Brunswick, NJ, USA.
Human vaccines (Impact Factor: 3.64). 05/2011; 7(5):497-505. DOI: 10.4161/hv.7.5.15132
Source: PubMed

ABSTRACT Cancer immunotherapy has developed into a field of intense study as aspects of the immune system involved in the eradication of cancer have become delineated. Listeria monocytogenes is a gram-positive, facultative intracellular bacterium which infects antigen presenting cells (APC), and is being used as a cancer vaccine to deliver tumor antigens directly to the APC. This results in the generation of a strong immune response towards the tumor associated antigen and direct targeting of the tumor by the immune system. Advances in this field have led to the development of a series of L. monocytogenes-based cancer vaccines, which are currently in clinical trials. A phase I study has shown these vaccines can be safely administered and well-tolerated in terminal stage cancer patients and an efficacy signal was observed in patients who did not respond to other therapies. Additional data on the efficacy of these vaccines is expected in the near-term.

1 Follower
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial cancer therapy is a concept more than 100 years old - yet, all things considered, it is still in early development. While the use of many passive therapeutics is hindered by the complexity of tumor biology, bacteria offer unique features that can overcome these limitations. Microbial metabolism, motility and sensitivity can lead to site-specific treatment, highly focused on the tumor and safe to other tissues. Activation of tumor-specific immunity is another important mechanism of such therapies. Several bacterial strains have been evaluated as cancer therapeutics so far, Salmonella Typhimurium being one of the most promising. S. Typhimurium and its derivatives have been used both as direct tumoricidal agents and as cancer vaccine vectors. VNP20009, an attenuated mutant of S. Typhimurium, shows significant native toxicity against murine tumors and was studied in a first-in-man phase I clinical trial for toxicity and anticancer activity. While proved to be safe in cancer patients, insufficient tumor colonization of VNP20009 was identified as a major limitation for further clinical development. Antibody-fragment-based targeting of cancer cells is one of the few approaches proposed to overcome this drawback.
    Acta biochimica Polonica 07/2013; · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
    Brazilian Journal of Microbiology 01/2014; 45(4):1117-1129. DOI:10.1590/S1517-83822014000400001 · 0.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the emerging field of active and specific cancer immunotherapy, strategies using live-attenuated bacterial vectors have matured in terms of academic and industrial development. Different bacterial species can be genetically engineered to deliver antigen to APCs with strong adjuvant effects due to their microbial origin. Proteic or DNA-encoding antigen delivery routes and natural bacterial tropisms might differ among species, permitting different applications. After many academic efforts to resolve safety and efficacy issues, some firms have recently engaged clinical trials with live Listeria or Salmonella spp. We describe here the main technological advances that allowed bacteria to become one of the most promising vectors in cancer immunotherapy.
    Expert Review of Vaccines 10/2013; 12(10):1139-1154. DOI:10.1586/14760584.2013.836914 · 4.22 Impact Factor