Article

Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury

Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke-NIH, Bethesda, MD, USA.
Neurology (Impact Factor: 8.3). 03/2011; 76(12):1038-45. DOI: 10.1212/WNL.0b013e318211c33e
Source: PubMed

ABSTRACT This study investigates the interaction between brain lesion location and monoamine oxidase A (MAO-A) in the genesis of aggression in patients with penetrating traumatic brain injury (PTBI).
We enrolled 155 patients with PTBI and 42 controls drawn from the Vietnam Head Injury Study registry. Patients with PTBI were divided according to lesion localization (prefrontal cortex [PFC] vs non-PFC) and were genotyped for the MAO-A polymorphism linked to low and high transcriptional activity. Aggression was assessed with the aggression/agitation subscale of the Neuropsychiatric Inventory (NPI-a).
Patients with the highest levels of aggression preferentially presented lesions in PFC territories. A significant interaction between MAO-A transcriptional activity and lesion localization on aggression was revealed. In the control group, carriers of the low-activity allele demonstrated higher aggression than high-activity allele carriers. In the PFC lesion group, no significant differences in aggression were observed between carriers of the 2 MAO-A alleles, whereas in the non-PFC lesion group higher aggression was observed in the high-activity allele than in the low-activity allele carriers. Higher NPI-a scores were linked to more severe childhood psychological traumatic experiences and posttraumatic stress disorder symptomatology in the control and non-PFC lesion groups but not in the PFC lesion group.
Lesion location and MAO-A genotype interact in mediating aggression in PTBI. Importantly, PFC integrity is necessary for modulation of aggressive behaviors by genetic susceptibilities and traumatic experiences. Potentially, lesion localization and MAO-A genotype data could be combined to develop risk-stratification algorithms and individualized treatments for aggression in PTBI.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated whether structural brain lesions modulate the relationship between pathological aggression and the dopaminergic system in traumatic brain injury (TBI). While converging evidence suggests that different areas of the prefrontal cortex modulate dopaminergic activity, to date no evidence exists of a modulation of endogenous dopaminergic tone by lesion localization in penetrating TBI (pTBI). This study included 141 male Caucasian veterans who suffered penetrating pTBI during their service in Vietnam and 29 healthy male Caucasian Vietnam veterans. Participants were genotyped for 3 functional single nucleotide polymorphisms (SNPs): dopamine receptor D1 (DRD1) rs686, dopamine receptor D2 (DRD2) rs4648317, and catechol-O-methyltransferase (COMT) Val158Met. Patients underwent brain CT scans and were divided into medial prefrontal cortex, lateral prefrontal cortex, and posterior cortex lesion groups. Long-term aggression levels were evaluated with the agitation/aggression subscale of the Neuropsychiatric Inventory. Our data showed that carriers of more transcriptionally active DRD1 alleles compared to noncarriers demonstrated greater aggression levels due to medial prefrontal cortex lesions but reduced aggression levels due to lateral prefrontal cortex lesions independently of DRD2 rs4648317 or COMT Val158Met genotypes. Our results suggest that the relationship between pTBI-related aggression and the dopaminergic system is modulated by lesion location. Potentially lesion location could represent an easy-to-use, widely available, para-clinical marker to help in the development of an individualized therapeutic approach to pTBI-related pathological aggression.
    CNS spectrums 03/2014; 19(5):1-9. DOI:10.1017/S1092852914000108 · 1.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary factors are increasingly attracting the interest of behavioral scientists and practitioners. Our aim in the present article is to introduce some state-of-the-art topics in behavioral genetics, as well as selected findings in the field, in order to illustrate how genetic makeup can modulate the impact of environmental factors. We focus on the most-studied polymorphism to date for antisocial responses to adversity: the monoamine oxidase A gene. Advances, caveats, and promises of current research are reviewed. We also discuss implications for the use of genetic information in applied settings.
    Psychology Research and Behavior Management 07/2014; 7:185-200. DOI:10.2147/PRBM.S40458
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary objective: To explore the relationships between verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury. Research design: Multivariate statistical modelling of observed verbal aggression, physical aggression and inappropriate sexual behaviour utilizing demographic, pre-morbid, injury-related and neurocognitive predictors. Methods and procedures: Clinical records of 152 participants with acquired brain injury were reviewed, providing an important data set as disordered behaviours had been recorded at the time of occurrence with the Brain Injury Rehabilitation Trust (BIRT) Aggression Rating Scale and complementary measures of inappropriate sexual behaviour. Three behavioural components (verbal aggression, physical aggression and inappropriate sexual behaviour) were identified and subjected to separate logistical regression modelling in a sub-set of 77 participants. Main outcomes and results: Successful modelling was achieved for both verbal and physical aggression (correctly classifying 74% and 65% of participants, respectively), with use of psychotropic medication and poorer verbal function increasing the odds of aggression occurring. Pre-morbid history of aggression predicted verbal but not physical aggression. No variables predicted inappropriate sexual behaviour. Conclusions: Verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury appear to reflect separate clinical phenomena rather than general behavioural dysregulation. Clinical markers that indicate an increased risk of post-injury aggression were not related to inappropriate sexual behaviour.
    Brain Injury 08/2013; 27(10). DOI:10.3109/02699052.2013.804200 · 1.51 Impact Factor

Full-text (2 Sources)

Download
64 Downloads
Available from
May 19, 2014