Article

An ENU-induced mouse mutant of SHIP1 reveals a critical role of the stem cell isoform for suppression of macrophage activation.

Rotary Bone Marrow Research Laboratories, Royal Melbourne Hospital, Victoria 3050, Australia.
Blood (Impact Factor: 9.78). 03/2011; 117(20):5362-71. DOI: 10.1182/blood-2011-01-331041
Source: PubMed

ABSTRACT In a recessive ENU mutagenesis screen for embryonic lethality, we identified a mouse pedigree with a missense mutation of SHIP1 (SHIP1(el20)) leading to an amino acid substitution I641T in the inositol-5'-phosphatase domain that represses phosphatidylinositol-3-kinase signaling. Despite detectable expression of functional SHIP1 protein, the phenotype of homozygous SHIP1(el20/el20) mice was more severe than gene-targeted SHIP1-null (SHIP1(-/-)) mice. Compared with age-matched SHIP1(-/-) mice, 5-week-old SHIP1(el20/el20) mice had increased myeloid cells, serum IL-6 levels, marked reductions in lymphoid cells, and died by 7 weeks of age with infiltration of the lungs by activated macrophages. Bone marrow transplantation demonstrated that these defects were hematopoietic-cell-autonomous. We show that the el20 mutation reduces expression in SHIP1(el20/el20) macrophages of both SHIP1 and s-SHIP, an isoform of SHIP1 generated by an internal promoter. In contrast, SHIP1(-/-) macrophages express normal levels of s-SHIP. Compound heterozygous mice (SHIP1(-/el20)) had the same phenotype as SHIP1(-/-) mice, thus providing genetic proof that the more severe phenotype of SHIP1(el20/el20) mice is probably the result of concomitant loss of SHIP1 and s-SHIP. Our results suggest that s-SHIP synergizes with SHIP1 for suppression of macrophage activation, thus providing the first evidence for a role of s-SHIP in adult hematopoiesis.

1 Bookmark
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: SHIP-1 has an important role in controlling immune cell function through its ability to downmodulate PI3K signaling pathways that regulate cell survival and responses to stimulation. Mice deficient in SHIP-1 display several chronic inflammatory phenotypes including antibody-mediated autoimmune disease, Crohn's disease-like ileitis and a lung disease reminiscent of chronic obstructive pulmonary disease. The ileum and lungs of SHIP-1-deficient mice are infiltrated at an early age with abundant myeloid cells and the mice have a limited lifespan primarily thought to be due to the consolidation of lungs with spontaneously activated macrophages. To determine whether the myeloid compartment is the key initiator of inflammatory disease in SHIP-1-deficient mice, we examined two independent strains of mice harboring myeloid-restricted deletion of SHIP-1. Contrary to expectations, conditional deletion of SHIP-1 in myeloid cells did not result in consolidating pneumonia or segmental ileitis typical of germline SHIP-1 deficiency. In addition, other myeloid cell abnormalities characteristic of germline loss of SHIP-1, including flagrant splenomegaly and enhanced myelopoiesis, were absent in mice lacking SHIP-1 in myeloid cells. This study indicates that the spontaneous inflammatory disease characteristic of germline SHIP-1 deficiency is not initiated solely by LysM-positive myeloid cells but requires the simultaneous loss of SHIP-1 in other hematolymphoid lineages.Genes and Immunity advance online publication, 6 March 2014; doi:10.1038/gene.2014.9.
    Genes and immunity 03/2014; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SH2-containing inositol phosphatase-1 (SHIP-1) is a 5' inositol phosphatase known to negatively regulate the product of phosphoinositide-3 kinase (PI3K), PI(3,4,5)P(3). SHIP-1 can be recruited to a large number of inhibitory receptors expressed on NK cells. However, its role in natural killer (NK) cell development, maturation, and functions is not well defined. In this study, we found that the absence of SHIP-1 results in a loss of peripheral NK cells. However, using chimeric mice we demonstrated that SHIP-1 expression is not required intrinsically for NK cell lineage development. In contrast, SHIP-1 is required cell autonomously for NK cell terminal differentiation. These findings reveal both a direct and indirect role for SHIP-1 at different NK cell development checkpoints. Notably, SHIP-1 deficient NK cells display an impaired ability to secrete IFN-γ during cytokine receptor mediated responses while ITAM containing receptor-mediated responses is not affected. Taken together, our results provide novel insights on how SHIP-1 participates in the development, maturation, and effector functions of NK cells.
    Blood 10/2012; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
    Current topics in microbiology and immunology 01/2012; 362:247-314. · 3.47 Impact Factor