Article

Synthetic enzyme inhibitor: a novel targeting ligand for nanotherapeutic drug delivery inhibiting tumor growth without systemic toxicity

Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
Nanomedicine: nanotechnology, biology, and medicine (Impact Factor: 5.98). 03/2011; 7(6):665-73. DOI: 10.1016/j.nano.2011.03.001
Source: PubMed

ABSTRACT Unresolved problems associated with ligand-targeting of liposomal nanoparticles (NPs) to solid tumors include variable target receptor expression due to genetic heterogeneity and insufficient target specificity, leading to systemic toxicities. This study addresses these issues by developing a novel ligand-targeting strategy for liposomal NPs using RR-11a, a synthetic enzyme inhibitor of Legumain, an asparaginyl endopeptidase. Cell-surface expression of Legumain is driven by hypoxic stress, a hallmark of solid tumors. Legumain-targeted RR-11a-coupled NPs revealed high ligand-receptor affinity, enhanced solid-tumor penetration and uptake by tumor cells. Treatment of tumor-bearing mice with RR-11a-coupled NPs encapsulating doxorubicin resulted in improved tumor selectivity and drug sensitivity, leading to complete inhibition of tumor growth. These antitumor effects were achieved while eliminating systemic drug toxicity. Therefore, synthetic enzyme inhibitors, such as RR-11a, represent a new class of compounds that can be used for highly specific ligand-targeting of NPs to solid tumors. FROM THE CLINICAL EDITOR: This study addresses the problems associated with ligand-targeting of liposomal nanoparticles to solid tumors with variable target receptor expression. A novel and efficacious targeting strategy has been developed towards a synthetic enzyme inhibitor of Legumain. The authors demonstrate successful tumor growth inhibiting effect while eliminating systemic drug toxicity in an animal model using this strategy.

Download full-text

Full-text

Available from: Ze Liu, Jan 30, 2015
0 Followers
 · 
304 Views
  • Source
    • "Thus, following legumaininduced activation, this prodrug proved effective to treat cancers with reduced toxicity [Liu et al., 2003; Bajjuri et al., 2011]. Moreover, Legumain-specific ligand-targeting nanoparticles have been effective for breast cancer chemotherapy in mouse model without toxicity [Liao et al., 2011]. Consequently, further studies need to be done to assess if legumain can serve as an effective molecular target for the treatment of ovarian cancer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Legumain is a member of the asparaginyl endopeptidase family that is over-expressed in response to hypoxic stress on mammary adenocarcinoma, colorectal cancer, proliferating endothelial cells, and tumor-associated macrophages (TAMs). Here, we demonstrate that elevated expression of legumain in ovarian cancer by a proteomic approach using isobaric tags for relative and absolute quantification (iTRAQ) followed by liquid chromatography-mass spectrometry (LC-MS/MS). To investigate the relationship between legumain expression and ovarian cancer development, we tested legumain expression in malignant human ovarian tumors (n = 60), borderline ovarian tumors (n = 20), benign ovarian tumors (n = 20), and normal ovary samples (n = 20) using immunohistochemical assay (IHC). A correlation between legumain expression, and clinocopathologic and biological variables was also established. Importantly, increased legumain expression was validated by real-time PCR and Western blots, correlated positively with an increased malignancy of ovarian tumors (P < 0.01). In fact, patients with strong legumain expression had a worse prognosis (P = 0.03). In addition, results of in vitro experiments revealed that over-expression of legumain correlates with increased cell migration and invasion of ovarian cancer cells. Although legumain's functional role and clinical utility remain to be established, our results indicated that a sensitive assay for early expression of legumain may serve as both a potential biomarker and a molecular target for treatment of ovarian cancer.
    Journal of Cellular Biochemistry 08/2012; 113(8):2679-86. DOI:10.1002/jcb.24143 · 3.37 Impact Factor
  • Source
    • "Liposomal nanoparticle functions as a well-established delivery tool for drugs or genes and provides a versatile platform for exploring multiple approaches that can potentially enhance the delivery and targeting of therapies to tumor [11] [12]. Stable lipoplexes with plasmid DNA or drug can be easily formed without any obvious toxic side-effects [13] [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Most hepatocellular carcinoma (HCC) therapies fail to target cancer stem cells (CSCs) and monitor cancer progression or regression. The purpose of this study was to evaluate the possibility of cancer imaging and simultaneously monitoring targeted therapy in a single animal by anti-CD44 antibody-mediated liposomal nanoparticle. In this study, an in situ liver tumor model was applied for therapy by injecting 1.0 × 10(6) HepG2 cells carrying a reporter system encoding a double fusion (DF) reporter gene consisting of firefly luciferase (Fluc) and green fluorescent protein (GFP) into the liver of NOD/SCID mice. A strategy was developed which specifically targeted HCC via anti-CD44 antibody-mediated liposomal nanoparticle delivery, loaded of either doxorubicin (Dox) or a triple fusion (TF) gene containing the herpes simplex virus truncated thymidine kinase (HSV-ttk) and renilla luciferase (Rluc) and red fluorescent protein (RFP). The NOD/SCID mice were subsequently treated with ganciclovir (GCV) and the growth status of tumor was monitored by optical bioluminescence imaging (BLI) of Fluc and specific targeting of the liposomal nanoparticle was tracked by Rluc imaging. CD44 antibody-mediated liposomal nanoparticle, loaded of TF plasmids, were shown to be useful for monitoring and evaluating targeting efficacy and gene therapy by non-invasive molecular imaging. Here, we demonstrate the time intensive preclinical steps involved in molecular target identification, validation, and characterization by dual molecular imaging. This targeted and traceable therapeutic strategy has potential advantages to overcome the problems of conventional tumor therapy and may open a new application for the treatment of HCC by targeting CSCs.
    Biomaterials 04/2012; 33(20):5107-14. DOI:10.1016/j.biomaterials.2012.03.067 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor microenvironment (TME) mediates immunosuppression resulting in tumor cell escape from immune surveillance and cancer vaccine failure. Immunosuppression is mediated by the STAT-3 transcription factor, which potentiates signaling in tumor and immune cells. Because immunosuppression continues to be a major inhibitor of cancer vaccine efficacy, we examined in this study whether therapeutically targeted delivery of a synthetic STAT-3 inhibitor to the TME, combined with an HER-2 DNA vaccine can improve immune surveillance against HER-2(+) breast cancer and prevent its recurrence. To this end, we developed a novel ligand-targeted nanoparticle (NP) encapsulating a CDDO-Im payload capable of specific delivery to the TME, which showed an effective therapeutic inhibition of STAT-3 activation in primary tumors. Furthermore, we showed that treatment with these NPs resulted in priming of the immune TME, characterized by increased IFN-γ, p-STAT-1, GM-CSF, IL-2, IL-15, and IL-12b and reduced TGF-β, IL-6, and IL-10 protein expression. In addition, we found significantly increased tumor infiltration by activated CD8(+) T cells, M1 macrophages, and dendritic cells. These changes correlated with delayed growth of orthotopic 4TO7 breast tumors and, when combined with an HER-2 DNA vaccine, prevented HER-2(+) primary tumor recurrence in immunocompetent mice. Furthermore, antitumor T-cell responses were enhanced in splenocytes isolated from mice treated with this combination therapy. Together, these data show effective protection from cancer recurrence through improved immune surveillance against a tumor-specific antigen.
    Cancer Research 07/2011; 71(17):5688-96. DOI:10.1158/0008-5472.CAN-11-1264 · 9.28 Impact Factor
Show more