Essential Role for Retinoic Acid in the Promotion of CD4(+) T Cell Effector Responses via Retinoic Acid Receptor Alpha

Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Immunity (Impact Factor: 19.75). 03/2011; 34(3):435-47. DOI: 10.1016/j.immuni.2011.03.003
Source: PubMed

ABSTRACT Vitamin A and its metabolite, retinoic acid (RA) are implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we showed RA was also required to elicit proinflammatory CD4(+) helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) was the critical mediator of these effects. Antagonism of RAR signaling and deficiency in RARα (Rara(-/-)) resulted in a cell-autonomous CD4(+) T cell activation defect, which impaired intermediate signaling events, including calcium mobilization. Altogether, these findings reveal a fundamental role for the RA-RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunologists studying the relationship between nutrition and immunological function face many challenges. We discuss here some of the historical skepticism with which nutritional research has often been faced and the complexities that need to be overcome in order to provide meaningful mechanistic insights.
    Nature Immunology 02/2015; 16(3):215-9. DOI:10.1038/ni.3100 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Roles of all-trans-retinoic acid (tRA), a metabolite of vitamin A (VA), in both tolerogenic and immunogenic responses are documented. However, how tRA affects the development of systemic autoimmunity is poorly understood. Here we demonstrate that tRA have paradoxical effects on the development of autoimmune lupus in the MRL/lpr mouse model. We administered, orally, tRA or VA mixed with 10% of tRA (referred to as VARA) to female mice starting from 6 weeks of age. At this age, the mice do not exhibit overt clinical signs of lupus. However, the immunogenic environment preceding disease onset has been established as evidenced by an increase of total IgM/IgG in the plasma and expansion of lymphocytes and dendritic cells in secondary lymphoid organs. After 8 weeks of tRA, but not VARA treatment, significantly higher pathological scores in the skin, brain and lung were observed. These were accompanied by a marked increase in B-cell responses that included autoantibody production and enhanced expression of plasma cell-promoting cytokines. Paradoxically, the number of lymphocytes in the mesenteric lymph node decreased with tRA that led to significantly reduced lymphadenopathy. In addition, tRA differentially affected renal pathology, increasing leukocyte infiltration of renal tubulointerstitium while restoring the size of glomeruli in the kidney cortex. In contrast, minimal induction of inflammation with tRA in the absence of an immunogenic environment in the control mice was observed. Altogether, our results suggest that under a predisposed immunogenic environment in autoimmune lupus, tRA may decrease inflammation in some organs while generating more severe disease in others.
    PLoS ONE 01/2015; 10(3-3):e0118176. DOI:10.1371/journal.pone.0118176 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Immunity 02/2015; 42:1-13. DOI:10.1016/j.immuni.2015.02.003 · 19.75 Impact Factor

Full-text (4 Sources)

Available from
May 19, 2014