Article

Measurement of the aortic annulus size by real-time three-dimensional transesophageal echocardiography.

Department of Cardiology, West-German Heart Center Essen, University of Duisburg-Essen, Germany.
Minimally invasive therapy & allied technologies: MITAT: official journal of the Society for Minimally Invasive Therapy (Impact Factor: 1.33). 04/2011; 20(2):85-94. DOI: 10.3109/13645706.2011.557385
Source: PubMed

ABSTRACT We sought to determine the level of agreement and the reproducibility of two-dimensional (2D) transthoracic (2D-TTE), 2D transesophageal (2D-TEE) and real-time three-dimensional (3D) transesophageal echocardiography (RT3D-TEE) for measurement of aortic annulus size in patients referred for transcatheter aortic valve implantation (TAVI). Accurate preoperative assessment of the dimensions of the aortic annulus is critical for patient selection and successful implantation in those undergoing TAVI for severe aortic stenosis (AS). Annulus size was measured using 2D-TTE, 2D-TEE and RT3D-TEE in 105 patients with severe AS referred for TAVI. Agreement between echocardiographic methods and interobserver variability was assessed using the Bland-Altman method and regression analysis, respectively. The mean aortic annuli were 21,7 ± 3 mm measured with 2D-TTE, 22,6 ± 2,8 mm with 2D-TEE and 22,3 ± 2,9 mm with RT3D-TEE. The results showed a small but significant mean difference and a strong correlation between the three measurement techniques (2D-TTE vs. 2D-TEE mean difference 0,84 ± 1,85 mm, r = 0,8, p < 0,0001; 2D-TEE vs. 3D-TEE 0,27 ± 1,14 mm, r = 0,91, p < 0,02; 2D-TTE vs. 3D-TEE 0,58 ± 2,21 mm, r = 0,72, p = 0,02); however, differences between measurements amounted up to 6,1 mm. Interobserver variability for 2D-TTE and 2D-TEE was substantially higher compared with RT3D-TEE. We found significant differences in the dimensions of the aortic annulus measured by 2D-TTE, 2D-TEE and RT3D-TEE. Thus, in patients referred for TAVI, the echocardiographic method used may have an impact on TAVI strategy.

1 Bookmark
 · 
204 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise measurements of aortic annulus dimensions are crucial for prosthesis size selection in patients undergoing transcatheter aortic valve implantation (TAVI). The so-called effective diameter (derived from area) measured in multislice computed tomography (MSCT) images has evolved to be the most precise measurement tool. Usually, the operator must manually adjust the aortic annular plane. Syngo Aortic ValveGuide (Siemens Healthcare) is a new software tool that allows for automatic aortic root reconstruction and annular plane detection. The aim of this study was to compare the effective diameter measured in automatically detected and manually adjusted annular plane. Seventy-three raw image datasets of preoperative TAVI MSCT scans were analysed using our institutional gold standard (3Mensio Valves™) with manual annular plane adjustment and using Aortic ValveGuide with automatic annular plane detection. The aortic annular circumference was manually marked for both software tools, and the effective diameter was calculated using the formula: effective diameter = 2 × √(circumferential area/π). Automatic annulus plane detection using Syngo Aortic ValveGuide worked well in all MSCT scans. Minor manual adjustment of the detected plane was necessary in only 3 patients. The mean effective aortic annulus diameter was 23.1 ± 2.4 mm for 3Mensio and 23.3 ± 2.4 mm for Syngo Aortic ValveGuide. Bland-Altman analysis of both imaging software tools showed good agreement (mean difference of 0.16 mm and limits of agreement of -0.48 to 0.80 mm). Effective aortic annulus diameter measured with Syngo Aortic ValveGuide, as a new imaging software that allows for automatic aortic annular plane detection, shows good agreement to gold standard measurements. Automatic annulus plane detection might reduce the effort for MSCT analysis and may lead to more reproducible aortic annulus measurements. Aortic ValveGuide is part of the DynaCT and in future aortic annulus dimension measurements may be feasible during intraoperatively acquired DynaCT.
    European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 01/2014; · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the higher incidence of paravalvular regurgitation (PVR) with transcatheter aortic valve replacement (TAVR), this novel treatment modality has rapidly emerged as a reasonable alternative to surgical aortic valve replacement (SAVR) in high risk and inoperable patients. This review will discuss the current literature with respect to assessment, outcomes, predictors, and intraprocedural treatment options of PVR following TAVR. Understanding the predictors may help reduce the incidence of PVR and improving the outcome of this procedure.
    Current Cardiology Reports 05/2014; 16(5):475.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C-arm used for fluoroscopy during transcatheter aortic valve replacement (TAVR) may also be used to acquire 3-dimensional data sets similar to multidetector row CT (MDCT). The aim of this study was to evaluate the feasibility of C-arm CT (CACT) for aortic annulus and root (AoA/R) measurements in TAVR planning compared with MDCT. Twenty patients who were studied for TAVR underwent MDCT and CACT. Two independent observers measured predicted perpendicular projection to annular plane, diameters of the aortic annulus, sinus of Valsalva, sinotubular junction and ascending aorta, distance of coronary ostia to annular plane, sinus of Valsalva height, and leaflet length. Correlation between MDCT and CACT and interobserver variability were analyzed. MDCT and CACT showed strong correlation for all the measurements of the AoA/R (r ranging from 0.62 to 0.94; P between <.001 and .042) and also for the predicted perpendicular projection (left/right anterior oblique: r = 0.96, P = .002; cranial/caudal: r = 0.83, P = .043). Interobserver variability analysis showed disagreement for the measurements of the aortic annulus structures with CACT (intraclass correlation coefficient [ICC], <0.25) but not for the rest of the variables (ICC between 0.47 and 0.97). MDCT showed no interobserver variability for all the measurements (ICC between 0.45 and 0.93). CACT showed strong correlation with MDCT for the measurement of all AoA/R structures. However, CACT showed also important interobserver variability for the assessment of the aortic annulus. Therefore, valve sizing may not be reliably performed on the basis of CACT measurements alone.
    Journal of cardiovascular computed tomography 01/2014; 8(1):33-43. · 2.55 Impact Factor