Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways.

Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, Republic of China.
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 03/2011; 59(9):5109-16. DOI: 10.1021/jf104700j
Source: PubMed

ABSTRACT Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins associated with JEV‑induced apoptosis, pEGFP‑non‑structural protein 3 (NS3) 1‑619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP‑NS3 1‑180 (expressing the protease domain) and pEGFP‑NS3 163‑619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase‑9/‑3‑dependent and ‑independent pathways. However, caspase‑8 activity was not found to be significantly different in NS3‑transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase‑9/‑3‑dependent and ‑independent cascades and trigger cell death.
    Molecular Medicine Reports 01/2013; · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The development of small molecule agonists of the liver X receptors (LXRs) has been an area of interest for over a decade, given the critical role of those receptors in cholesterol metabolism, glucose homeostasis, inflammation, innate immunity and lipogenesis. Many potential indications have been characterized over time including atherosclerosis, diabetes, inflammation, Alzheimer's disease and cancer. However, concerns about the lipogenic effects of full LXRα/β agonists have required extensive efforts aimed at identifying LXRβ agonist with limited activity on the LXRα receptor to increase the safety margins. Areas covered: This review includes a summary of the LXR agonists that have reached the clinic and summarizes the patent applications for LXR modulators from September 2009 to December 2012 with emphasis on chemical matters, biological data associated with selected analogs and therapeutic indications. Expert opinion: As LXR agonists have the potential to be useful for many indications, the scientific community, despite setbacks due to on-target side effects, has maintained interest and devised strategies to overcome safety hurdles. While a clinical proof of concept still remains elusive, the recent advancement of compounds into the clinic highlights that acceptable safety margins in preclinical species have been achieved.
    Expert Opinion on Therapeutic Patents 07/2013; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytostatic drug from traditional Chinese medicinal herb has acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Oxymatrine, classified as a quinolizidine alkaloid, is a phytochemical product derived from Sophora flavescens, and has been reported to possess anticancer activities. However, the cancer growth inhibitory effects and molecular mechanisms in human osteosarcoma MNNG/HOS cell have not been well studied. In the present study, the cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential (Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit. Our results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Furthermore, we found that oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax. This promoted mitochondrial dysfunction, leading to the release of cytochrome c from the mitochondria to the cytoplasm, as well as the activation of caspase-9 and -3. Moreover, addition of oxymatrine to MNNG/HOS cells also attenuated phosphatidylinositol 3-kinase (PI3K) ⁄Akt signaling pathway cascade, evidenced by the dephosphorylation of P13K and Akt. Likewise, oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality. Therefore, these findings should be useful for understanding the apoptotic cellular mechanism mediated by oxymatrine and might offer a therapeutic potential advantage for human osteosarcoma chemoprevention or chemotherapy.
    Tumor Biology 09/2013; · 2.84 Impact Factor