Themes in fibrosis and gastrointestinal inflammation

1Cleveland Clinic Foundation.
AJP Gastrointestinal and Liver Physiology (Impact Factor: 3.8). 03/2011; 300(5):G677-83. DOI: 10.1152/ajpgi.00104.2011
Source: PubMed


Wound healing is an appropriate response to inflammation and tissue injury in the gastrointestinal tract. If wound healing responses are excessive, perpetuated, or prolonged, they lead to fibrosis, distortion of tissue architecture, and loss of function. This introductory editorial and the minireviews or reviews in this themes series highlight the diversity in severity and location of fibrosis in response to gastrointestinal inflammation. The multiplicity of cellular and molecular mediators and new players, including stem cells or extracellular matrix-producing cells derived from nonmesenchymal cell types, is reviewed. Comparisons of inflammation-induced fibrosis across organ systems and the need for integrated and systems-based molecular approaches, new imaging modalities, well-characterized animal models, cell culture models, and improved diagnostic or predictive markers are reviewed. To date, intestinal fibrosis has received much less attention than inflammation in terms of defining mechanisms and underlying causes. This themes series aims to illustrate the importance of research in this area in gastrointestinal health and disease.

10 Reads
  • Source
    • "Intestinal fibrosis in IBD 61 gene silencing strategies, and stem cell transplantation technologies (Table I). It should be stressed, however, that most of the evidence indicating a beneficial effect of these drugs have been derived from studies performed in vitro or in animal models of fibrogenesis [3] [25] [99]. Therefore, the real effectiveness of these agents in humans remains to be defined. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.
    Scandinavian Journal of Gastroenterology 01/2015; 50(1):53-65. DOI:10.3109/00365521.2014.968863 · 2.36 Impact Factor
  • Source
    • "This deposition could result from chronic inflammation or deregulation of the healing process [7]. Mesenchymal cells usually produce extracellular matrix under the influence of TGF-β [8]. Epithelial and endothelial cells could be activated by TGF-β and IL-1 β to produce extracellular matrix [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Magnetic resonance colonography (MRC) has been developed to assess inflammatory bowel diseases. We aimed to assess the feasibility of MRC in rats with TNBS-induced chronic colitis and to confront imaging results with fibrosis and stenosing features of the model. Materials and Methods Chronic colitis was induced in 12 rats by weekly intra-rectal injection of increasing doses of TNBS for 6 weeks, while 8 control rats received the vehicle. At week 7, MRC was performed. Fibrosis scores were assessed and fibrosis mediators measured. Results Chronic colitis was associated with significant body weight loss (p<0.0001) and higher colon weight/length compared to controls (p = 0.0004). Fibrosis mediators and histological scores were significantly higher in rats with TNBS than in controls: α-SMA expression (0.9 versus 0.61, p = 0.0311) and fibrosis score (p = 0.0308). Colon wall thickness was higher in rats with TNBS than in controls: maximal thickness (2.38 versus 0.74 mm, p<0.0001) and minimal thickness (1.33 versus 0.48 mm, p<0.0001). Wall signal intensity on T2w images was higher in rats with TNBS than in controls (9040 versus 6192, p = 0.0101) and correlated with fibrosis score (r = 0.5214; p = 0.04). Luminal narrowing was higher in rats with TNBS (50.08 versus 10.33%, p<0.0001) and correlated with α-SMA expression (r = 0.5618; p = 0.01). Stenosis was observed in 7/9 rats with TNBS and in no controls (p = 0.0053). Conclusions MRC is feasible and easily distinguishes rats with colitis from controls. MRC signs correlated with fibrosis parameters. MRC evaluation may be part of a new anti-fibrosis drug assessment in experimental models of chronic colitis.
    PLoS ONE 07/2014; 9(7):e100921. DOI:10.1371/journal.pone.0100921 · 3.23 Impact Factor
  • Source
    • "Intestinal fibrosis results from an abnormal response to a chronic local injury and is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins produced by activated myofibroblasts, which are also called ECM-producing cells.4-7 These cells are derived not only from resident mesenchymal cells (fibroblasts, sub-epithelial myofibroblasts and smooth muscle cells), but also from epithelial and endothelial cells (by a process known as epithelial/endothelial-mesenchymal transition), stellate cells, pericytes, as well as intestinal or bone marrow stem cells.3,6,7 The most important soluble factors that regulate the activation of ECM-producing cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system (RAS), angiogenic factors, peroxisome proliferator-activated receptors (PPARs), mammalian target of Rapamycin (mTOR), and products of oxidative stress.8,9 "
    [Show abstract] [Hide abstract]
    ABSTRACT: A simultaneous action of several pro-fibrotic mediators appears relevant in the development of fibrosis. There are evidences that transforming growth factor-β (TGF-β)/Smad3 pathway forms with αvβ6 integrin, mammalian target of Rapamycin (mTOR) and peroxisome proliferator-activated receptor-γ (PPARγ) a complex signalling network with extensive crosstalk and strong effects on fibrosis development. The present study evaluated the expression of TGFβ, Smad3, αvβ6 integrin, mTOR and PPARγ in 2, 4, 6-trinitrobenzenesulphonic acid (TNBS)-induced colorectal fibrosis in Smad3 wild-type (WT) and null mice. Smad3 WT mice treated with TNBS developed a marked colorectal fibrosis and showed a concomitant up-regulation of TGFβ, Smad3, αvβ6 and mTOR and a reduction of PPARγ expression. On the other hand, Smad3 Null mice similarly treated with TNBS did not develop fibrosis and showed a very low or even absent expression of TGFβ, Smad3, αvβ6 and mTOR and a marked over-expression of PPARγ. At the same time the expression of α-smooth muscle actin (a marker of activated myofibroblasts), collagen I-III and connective tissue growth factor (a downstream effector of TGFβ/Smad3-induced extracellular matrix proteins) were up-regulated in Smad3 WT mice treated with TNBS compared to Null TNBS-treated mice. These preliminary results suggest a possible interaction between these pro-fibrotic molecules in the development of intestinal fibrosis.
    European journal of histochemistry: EJH 10/2013; 57(4):e40. DOI:10.4081/ejh.2013.e40 · 2.04 Impact Factor
Show more

Similar Publications