Article

Determination of β-blockers in pharmaceutical and human urine by capillary electrophoresis with electrochemiluminescence detection and studies on the pharmacokinetics

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (Impact Factor: 2.69). 02/2011; 879(13-14):871-7. DOI: 10.1016/j.jchromb.2011.02.032
Source: PubMed

ABSTRACT A novel method for simultaneous determination of atenolol, metoprolol and esmolol was proposed by capillary electrophoresis (CE) separation and electrochemiluminescence (ECL) detection. Poly-β-cyclodextrin (Poly-β-CD) was used as an additive in the running buffer to improve the separation of three analytes. The conditions for CE separation, ECL detection and effect of Poly-β-CD were investigated in detail. The three β-blockers with very similar structures were well separated and detected under the optimum conditions. The linear ranges of the standard solution for atenolol and esmolol were 2.5-125 μmol/L with a detection limit (S/N=3) of 0.5 μmol/L, and for metoprolol was 0.5-25 μmol/L with a detection limit of 0.1 μmol/L. For three β-blockers from spiked aqueous and urine samples, the accuracy and precision including intraday and interday experiments were performed by calculating the recovery, the relative standard deviations of the ECL intensity and the migration time, respectively. The developed method was applied to the determination of metoprolol content in commercial pharmaceutical, and the analytical results are in good agreement with the nominal value with recoveries in the range of 98.7-105%. The proposed method was also applied to the monitoring of pharmacokinetics for metoprolol in human body.

0 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A second-order multivariate calibration method based on a combination of unfolded partial least-squares (U-PLS) with residual bilinearization (RBL) has been applied to second-order data obtained from excitation-emission fluorescence matrices for determining atenolol in human urine, even in the presence of background interactions and fluorescence inner filter effects, which are both sample dependent. Atenolol is a cardioselective beta-blocker, which is considered a doping agent in shoot practice, so that its determination in urine can be required for monitoring the drug. Loss of trilinearity due to analyte-background interactions which may vary between samples, as well as inner filter effects, precludes the use of methods like parallel factor analysis (PARAFAC) that cannot handle trilinearity deviations, and justifies the employment of U-PLS. Successful analysis required to include the background in the calibration set. Unexpected components appear in new urine samples, different from those used in calibration set, requiring the second-order advantage which is obtained from a separate procedure known as residual bilinearization (RBL). Satisfactory results were obtained for artificially spiked urines, and also for real urine samples. They were statistically compared with those obtained applying a reference method based on high-performance liquid chromatography (HPLC).
    Talanta 09/2011; 85(3):1526-34. DOI:10.1016/j.talanta.2011.06.043 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A comprehensive review on the development of analytical methods, by coupling electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) and microchip electrophoresis (ME), is presented. After the description of the basic mechanism of ECL, the addition mode of luminescence reagent in CE-ECL system has been discussed. The analytical applications of the CE-ECL technique in terms of different analytes are also given. Due to the importance of ME as a separation method for the present and future, the ME detection methods based on ECL are considered in a relatively detailed way. Finally, possible trends for CE/ME-ECL in the near future are discussed.
    Analytica chimica acta 10/2011; 704(1-2):16-32. DOI:10.1016/j.aca.2011.07.016 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current manuscript reports the first capillary electrophoresis method for the separation and quantification of metoprolol (MET) and hydrochlorothiazide (HCT) in their combined dosage form. MET and HCT were detected at 240 and 214 nm, respectively, using a photodiode array detector. The univariate approach was used for optimizing voltage, injection time and capillary temperature. The factorial design with response surface plots, as a multivariate approach, was used to study the effect of buffer concentration and pH on resolution, peak area and migration time. The optimum conditions were 50 mmol/L phosphate at pH 9.5, injection time 10.0 s, voltage 25 kV and capillary temperature 25°C. The method was linear in the range of 2.5-250 µg/mL for both drugs with correlation coefficients above 0.9997. Additionally, acceptable recovery of the contents of MET and HCT in their formulations (96.0-100.3%) with acceptable precision (1.38-2.60 %) were achieved. Moreover, the limits of detection of MET and HCT were 0.02 and 0.01 µg/mL, respectively, which were suitable for pharmaceutical analysis.
    Journal of chromatographic science 06/2012; DOI:10.1093/chromsci/bms107 · 1.03 Impact Factor
Show more