Article

Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada.

Department of Geography, University of Toronto , Toronto, Ontario M5S 3G3, Canada.
Environmental Science & Technology (Impact Factor: 5.48). 03/2011; 45(8):3268-74. DOI: 10.1021/es102767g
Source: PubMed

ABSTRACT Indoor air concentrations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) measured in 20 locations in Toronto ranged 0.008-16 ng·m(-3) (median 0.071 ng·m(-3)) and 0.8-130.5 ng·m(-3) (median 8.5 ng·m(-3)), respectively. PBDE and PCB air concentrations in homes tended to be lower than that in offices. Principal component analysis of congener profiles suggested that electrical equipment was the main source of PBDEs in locations with higher concentrations, whereas PUF furniture and carpets were likely sources to locations with lower concentrations. PCB profiles in indoor air were similar to Aroclors 1248, 1232, and 1242 and some exterior building sealant profiles. Individual PBDE and PCB congener concentrations in air were positively correlated with colocated dust concentrations, but total PBDE and total PCB concentrations in these two media were not correlated. Equilibrium partitioning between air and dust was further examined using log-transformed dust/air concentration ratios for which lower brominated PBDEs and all PCBs were correlated with K(OA). This was not the case for higher brominated BDEs for which the measured ratios fell below those based on K(OA) suggesting the air-dust partitioning process could be kinetically limited. Total emissions of PBDEs and PCBs to one intensively studied office were estimated at 87-550 ng·h(-1) and 280-5870 ng·h(-1), respectively, using the Multimedia Indoor Model of Zhang et al. Depending on the air exchange rate, up to 90% of total losses from the office could be to outdoors by means of ventilation. These results support the hypotheses that dominant sources of PBDEs differ according to location and that indoor concentrations and hence emissions contribute to outdoor concentrations due to higher indoor than outdoor concentrations along with estimates of losses via ventilation.

1 Bookmark
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in furniture foam, electronics and other home furnishings. A field study was conducted that enrolled 139 households from California, which has had more stringent flame retardant requirements than other countries and areas, collecting passive air, floor and indoor window surface wipes, and dust samples (investigator collected using an HVS3 and vacuum cleaner) in each home. PentaBDE and BDE209 were detected in the majority of the dust samples and many floor wipe samples, but the detection in air and window wipe samples was relatively low. Concentrations of each PBDE congener in different indoor environmental media were moderately correlated, with correlation coefficients ranging between 0.42 and 0.68. Correlation coefficients with blood levels were up to 0.65, and varied between environmental media and age group. Both investigator-collected dust and floor wipes were correlated with serum levels for a wide range of congeners. These two sample types also had a relatively high fraction of samples with adequate mass for reliable quantification. In 42 homes, PBDE levels measured in the same environmental media in the same home one year apart were statistically correlated (correlation coefficients: 0.57-0.90), with the exception of BDE209 which was not well correlated longitudinally. This article is protected by copyright. All rights reserved.
    Indoor Air 05/2014; · 3.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bioconcentration factors (BCFs) of 58 polychlorinated biphenyls (PCBs) were modeled by quantitative structure–activity relationship (QSAR) using density functional theory (DFT), the position of Cl substitution (PCS) and comparative molecular field analysis (CoMFA) methods. All the models were robust and predictive, and especially, the best CoMFA model was significant with a correlation coefficient (R2) of 0.926, a cross-validation correlation coefficient (Q2) of 0.821 and a root mean square error estimated (RMSE) of 0.235. The results indicate that the electrostatic descriptors play a more significant role in BCFs of PCBs. Additionally, a test set was used to compare the predictive ability of our models to others, and results show that our CoMFA model present the lowest RMSE. Thus, the models obtain in this work can be used to predict the BCFs of remaining 152 PCBs without available experimental values.
    Chemosphere 01/2014; 114:101–105. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information about the distribution of chemical-production mass with respect to use and release is a major and unavailable input for calculating population-scale exposure estimates. Based on exposure models and biomonitoring data, this study evaluates the distribution of total production volumes (and environmental releases if applicable) for a suite of organic compounds. We used Bayesian approaches that take the total intake from our exposure models as the prior intake distribution and the intake inferred from measured biomarker concentrations in the NHANES survey as the basis for updating. By carrying out a generalized sensitivity analysis, we separated the input parameters for which the modeled range of the total intake is within a factor of 2 of the intake inferred from biomonitoring data and those that result in a range greater than a factor of 2 of the intake. This analysis allows us to find the most sensitive (or important) parameters and the likelihood of emission rates for various source emission categories. Pie charts of contribution from each exposure pathway indicate that chemical properties are a primary determinant of the relative contribution of each exposure pathway within a given class of compounds. For compounds with relatively high octanol-water partition coefficients (Kow) such as di-2-ethylhexyl phthalate (DEHP), pyrene, 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47), and 2,2',4,4',5,5'-hexabromodiphenyl ether (PBDE-153), more than 80% of exposure derives from outdoor food ingestion and/or indoor dust ingestion. In contrast, for diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and naphthalene, all relatively volatile compounds, either inhalation (indoor and outdoor) or dermal uptake from direct consumer use is the dominant exposure pathway. The approach of this study provides insights on confronting data gaps to improve population-scale exposure estimates used for high-throughput chemical prioritization.
    Environment international. 06/2014; 70C:183-191.

Xianming Zhang