Article

Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada.

Department of Geography, University of Toronto , Toronto, Ontario M5S 3G3, Canada.
Environmental Science & Technology (Impact Factor: 5.26). 03/2011; 45(8):3268-74. DOI: 10.1021/es102767g
Source: PubMed

ABSTRACT Indoor air concentrations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) measured in 20 locations in Toronto ranged 0.008-16 ng·m(-3) (median 0.071 ng·m(-3)) and 0.8-130.5 ng·m(-3) (median 8.5 ng·m(-3)), respectively. PBDE and PCB air concentrations in homes tended to be lower than that in offices. Principal component analysis of congener profiles suggested that electrical equipment was the main source of PBDEs in locations with higher concentrations, whereas PUF furniture and carpets were likely sources to locations with lower concentrations. PCB profiles in indoor air were similar to Aroclors 1248, 1232, and 1242 and some exterior building sealant profiles. Individual PBDE and PCB congener concentrations in air were positively correlated with colocated dust concentrations, but total PBDE and total PCB concentrations in these two media were not correlated. Equilibrium partitioning between air and dust was further examined using log-transformed dust/air concentration ratios for which lower brominated PBDEs and all PCBs were correlated with K(OA). This was not the case for higher brominated BDEs for which the measured ratios fell below those based on K(OA) suggesting the air-dust partitioning process could be kinetically limited. Total emissions of PBDEs and PCBs to one intensively studied office were estimated at 87-550 ng·h(-1) and 280-5870 ng·h(-1), respectively, using the Multimedia Indoor Model of Zhang et al. Depending on the air exchange rate, up to 90% of total losses from the office could be to outdoors by means of ventilation. These results support the hypotheses that dominant sources of PBDEs differ according to location and that indoor concentrations and hence emissions contribute to outdoor concentrations due to higher indoor than outdoor concentrations along with estimates of losses via ventilation.

1 Bookmark
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 U.S. homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity-based indoor mass-balance model to estimate the whole house emission rates of SVOCs that would account for the measured dust concentrations. Di-2-ethylhexyl phthalate (DEHP) and di-iso-nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate (DEP) is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust-assay modeling approach shows promise for estimating indoor emission rates for SVOCs. This article is protected by copyright. All rights reserved.
    Indoor Air 10/2013; · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we have compiled and reviewed the most recent literature, published in print or online from January 2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. More data are now becoming available for remote areas not previously studied, Indian Ocean islands, for example. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in polar bears and some birds at high trophic levels in northern Europe. This may be partially a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance of this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey. Temporal trends for both PBDEs and HBCD in Asia are unclear currently. A knowledge gap has been noted in relation to metabolism and/or debromination of BDE209 and HBCD in birds. Further monitoring of human exposure and environmental contamination in areas of e-waste recycling, particularly in Asia and Africa, is warranted. More data on temporal trends of BDE and HBCD concentrations in a variety of matrices and locations are needed before the current status of these compounds can be fully assessed, and the impact of regulation and changing usage patterns among different flame retardants determined.
    Environment international 01/2014; 65C:147-158. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material-particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air-surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air-particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study.
    Science of The Total Environment 02/2014; · 3.26 Impact Factor

Xianming Zhang