Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence.

Division of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
Neurourology and Urodynamics (Impact Factor: 2.67). 03/2011; 30(3):447-55. DOI: 10.1002/nau.20998
Source: PubMed

ABSTRACT To assess the effect of intra-sphincteric injections of bone marrow mesenchymal stromal cells (MSCs) on Valsalva leak point pressure (VLPP) changes in an animal model of stress urinary incontinence (SUI).
Twenty-four female Sprague-Dawley rats underwent bilateral pudendal nerve section to induce SUI. Six rats were SUI controls, 6 received periurethral injection of Plasma-Lyte (SUI placebo control) and 12 were given periurethral injection of PKH26-labeled MSCs. Four weeks after injection, conscious cystometry was undertaken in animals and VLPP recorded. All groups were sacrificed, and frozen urethra sections were submitted to pathology and immunohistochemistry assessment.
Rat MSCs were positive for the cell surface antigens CD44, CD73, CD90, and RT1A, and negative for CD31, CD45, and RT1B, confirming their stem cell phenotype. In vitro, differentiated MSCs expressed α-smooth muscle actin (SMA) and desmin, markers of smooth and striated muscles in vivo. Immunohistochemistry of rat urethras revealed PKH26-labeled MSCs in situ and at the injection site. LPP was significantly improved in animals injected with MSCs. Mean LPP was 24.28 ± 1.47 cmH(2) O in rats implanted with MSCs and 16.21 ± 1.26 cmH(2) O in SUI controls (P<0.001). Atrophic urethras with implanted MSCs were positively stained for myosin heavy chain and desmin.
Rat MSCs have the ability to differentiate and skew their phenotype towards smooth and striated muscles, as demonstrated by SMA up-regulation and desmin expression. Periurethral injection of MSCs in an animal model of SUI restored the damaged external urethral sphincter and significantly improved VLPP.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It is reported that adipose-derived stem cells (ADSCs) had multilineage differentiation potential, and could differentiate into neuron-like cells induced by special induction media, which may provide a new idea for restoration of erectile dysfunction (ED) after cavernous nerve injury. The aim of this research was to explore the neuronal differentiation potential of ADSCs in vitro. ADSCs isolated from inguinal adipose tissue of rat were characterized by flow cytometry, and results showed that ADSCs were positive for mesenchymal stem cell markers CD90 and CD44, but negative for hematopoietic stem cell markers. ADSCs maintained self-renewing capacity and could differentiate into adipocytes and neurocytes under special culture condition. In this research, two methods were used to induce ADSCs. In method 1, ADSCs were treated with the preinduction medium including epithelium growth factor, basic fibroblast growth factor, and brain derived neurotrophic factor (BDNF) for 3 days, then with the neurogenic induction medium containing isobutylmethylxanthine, indomethacin, and insulin. While in method 2, BDNF was not used to treat ADSCs. After induction, neuronal differentiation of ADSCs was evaluated. Neuronal markers, glial fibrillary acidic protein (GFAP), and β-tubulin III (Tuj-1) were detected by immunofluorescence and Western Blot analyses. The expressions of GFAP and Tuj-1 in method 1 were obviously higher then those in method 2. In addition, the positive rate of the neuron-like cells was higher in method 1. It suggested that ADSCs are able to differentiate into neural-like cells in vitro, and the administration of BDNF in the preinduction medium may provide a new way to modify the culture method for getting more neuron-like cells in vitro.
    Cellular and Molecular Neurobiology 05/2012; · 2.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress urinary incontinence (SUI) is highly prevalent and associated with a reduced quality of life. An intact rhabdosphincter at the mid-urethra is mandatory to maintain urinary continence. Adult stem cell injection therapy for the regenerative repair of an impaired sphincter is currently at the forefront of incontinence research. The implanted cells will fuse with muscle and release trophic factors promoting nerve and muscle integration. Hereby, we review the use of mesenchymal stem cell therapy for SUI and the experience with the development of muscle-derived stem cells.
    International Urogynecology Journal 04/2011; 22(9):1075-83. · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last 15 years, many studies demonstrated the myogenic regenerative potential of bone marrow mesenchymal stem cells (BM-MSC), making them an attractive tool for the regeneration of damaged tissues. In this study, we have developed an animal model of esophagogastric myotomy (MY) aimed at determining the role of autologous MSC in the regeneration of the lower esophageal sphincter (LES) after surgery. Syngeneic BM-MSC were locally injected at the site of MY. Histological and functional analysis were performed to evaluate muscle regeneration, contractive capacity, and the presence of green fluorescent protein-positive BM-MSC (BM-MSC-GFP(+) ) in the damaged area at different time points from implantation. Treatment with syngeneic BM-MSC improved muscle regeneration and increased contractile function of damaged LES. Transplanted BM-MSC-GFP(+) remained on site up to 30 days post injection. Immunohistochemical analysis demonstrated that MSC maintain their phenotype and no differentiation toward smooth or striated muscle was shown at any time point. Our data support the use of autologous BM-MSC to both improve sphincter regeneration of LES and to control the gastro-esophageal reflux after MY.
    Neurogastroenterology and Motility 07/2013; · 2.94 Impact Factor


Available from
Jun 5, 2014