Article

Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence.

Division of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
Neurourology and Urodynamics (Impact Factor: 2.46). 03/2011; 30(3):447-55. DOI: 10.1002/nau.20998
Source: PubMed

ABSTRACT To assess the effect of intra-sphincteric injections of bone marrow mesenchymal stromal cells (MSCs) on Valsalva leak point pressure (VLPP) changes in an animal model of stress urinary incontinence (SUI).
Twenty-four female Sprague-Dawley rats underwent bilateral pudendal nerve section to induce SUI. Six rats were SUI controls, 6 received periurethral injection of Plasma-Lyte (SUI placebo control) and 12 were given periurethral injection of PKH26-labeled MSCs. Four weeks after injection, conscious cystometry was undertaken in animals and VLPP recorded. All groups were sacrificed, and frozen urethra sections were submitted to pathology and immunohistochemistry assessment.
Rat MSCs were positive for the cell surface antigens CD44, CD73, CD90, and RT1A, and negative for CD31, CD45, and RT1B, confirming their stem cell phenotype. In vitro, differentiated MSCs expressed α-smooth muscle actin (SMA) and desmin, markers of smooth and striated muscles in vivo. Immunohistochemistry of rat urethras revealed PKH26-labeled MSCs in situ and at the injection site. LPP was significantly improved in animals injected with MSCs. Mean LPP was 24.28 ± 1.47 cmH(2) O in rats implanted with MSCs and 16.21 ± 1.26 cmH(2) O in SUI controls (P<0.001). Atrophic urethras with implanted MSCs were positively stained for myosin heavy chain and desmin.
Rat MSCs have the ability to differentiate and skew their phenotype towards smooth and striated muscles, as demonstrated by SMA up-regulation and desmin expression. Periurethral injection of MSCs in an animal model of SUI restored the damaged external urethral sphincter and significantly improved VLPP.

1 Follower
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemotactic factors direct the migration of immune cells, multipotent stem cells, and progenitor cells under physiologic and pathologic conditions. Chemokine ligand 12 and chemokine ligand 7 have been identified and investigated in multiple studies for their role in cellular trafficking in the setting of tissue regeneration. Recent early phase clinical trials have suggested that these molecules may lead to clinical benefit in patients with chronic disease. Importantly, these two proteins may play additional significant roles in directing the migration of multipotent cells, such as mesenchymal stem cells and hematopoietic progenitor cells. This article reviews the functions of these two chemokines, focusing on recruitment to sites of injury, immune function modulation, and contributions to embryonic development. Additional research would provide valuable insight into the potential clinical application of these two proteins in stem cell therapy.
    Cytokine 10/2014; 69(2). DOI:10.1016/j.cyto.2014.06.007 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective To investigate whether a triple combination of early-differentiated cells derived from human amniotic fluid stem cells (hAFSCs) would show synergistic effects in urethral sphincter regeneration. Materials and Methods We early-differentiated hAFSCs into muscle, neuron and endothelial progenitor cells and then injected them into the urethral sphincter region of pudendal neurectomized ICR mice, as single-cell, double-cell or triple-cell combinations. Urodynamic studies and histological, immunohistochemical and molecular analyses were performed. ResultsUrodynamic study showed significantly improved leak point pressure in the triple-cell-combination group compared with the single-cell- or double-cell-combination groups. These functional results were confirmed by histological and immunohistochemical analyses, as evidenced by the formation of new striated muscle fibres and neuromuscular junctions at the cell injection site. Molecular analysis showed higher target marker expression in the retrieved urethral tissue of the triple-cell-combination group. The injection of early-differentiated hAFSCs suppressed in vivo host CD8 lymphocyte aggregations and did not form teratoma. The nanoparticle-labelled early-differentiated hAFSCs could be tracked in vivo with optical imaging for up to 14 days after injection. Conclusion Our novel concept of triple-combined early-differentiated cell therapy for the damaged sphincter may provide a viable option for incontinence treatment.
    BJU International 05/2014; 114(5). DOI:10.1111/bju.12815 · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.
    Advanced Drug Delivery Reviews 10/2014; DOI:10.1016/j.addr.2014.10.026 · 12.71 Impact Factor

Full-text

Download
27 Downloads
Available from
Jun 5, 2014