Article

Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence

Division of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
Neurourology and Urodynamics (Impact Factor: 2.46). 03/2011; 30(3):447-55. DOI: 10.1002/nau.20998
Source: PubMed

ABSTRACT To assess the effect of intra-sphincteric injections of bone marrow mesenchymal stromal cells (MSCs) on Valsalva leak point pressure (VLPP) changes in an animal model of stress urinary incontinence (SUI).
Twenty-four female Sprague-Dawley rats underwent bilateral pudendal nerve section to induce SUI. Six rats were SUI controls, 6 received periurethral injection of Plasma-Lyte (SUI placebo control) and 12 were given periurethral injection of PKH26-labeled MSCs. Four weeks after injection, conscious cystometry was undertaken in animals and VLPP recorded. All groups were sacrificed, and frozen urethra sections were submitted to pathology and immunohistochemistry assessment.
Rat MSCs were positive for the cell surface antigens CD44, CD73, CD90, and RT1A, and negative for CD31, CD45, and RT1B, confirming their stem cell phenotype. In vitro, differentiated MSCs expressed α-smooth muscle actin (SMA) and desmin, markers of smooth and striated muscles in vivo. Immunohistochemistry of rat urethras revealed PKH26-labeled MSCs in situ and at the injection site. LPP was significantly improved in animals injected with MSCs. Mean LPP was 24.28 ± 1.47 cmH(2) O in rats implanted with MSCs and 16.21 ± 1.26 cmH(2) O in SUI controls (P<0.001). Atrophic urethras with implanted MSCs were positively stained for myosin heavy chain and desmin.
Rat MSCs have the ability to differentiate and skew their phenotype towards smooth and striated muscles, as demonstrated by SMA up-regulation and desmin expression. Periurethral injection of MSCs in an animal model of SUI restored the damaged external urethral sphincter and significantly improved VLPP.

Download full-text

Full-text

Available from: Lysanne Campeau, Jun 28, 2015
1 Follower
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress urinary incontinence (SUI) is highly prevalent and associated with a reduced quality of life. An intact rhabdosphincter at the mid-urethra is mandatory to maintain urinary continence. Adult stem cell injection therapy for the regenerative repair of an impaired sphincter is currently at the forefront of incontinence research. The implanted cells will fuse with muscle and release trophic factors promoting nerve and muscle integration. Hereby, we review the use of mesenchymal stem cell therapy for SUI and the experience with the development of muscle-derived stem cells.
    International Urogynecology Journal 04/2011; 22(9):1075-83. DOI:10.1007/s00192-011-1432-1 · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress urinary incontinence is a common disorder affecting the quality of life for millions of women worldwide. Effective surgical procedures involving synthetic permanent meshes exist, but significant short- and long-term complications occur. Cell-based therapy using autologous stem cells or progenitor cells presents an alternative approach, which aims at repairing the anatomical components of the urethral continence mechanism. In vitro expanded progenitor cells isolated from muscle biopsies have been most intensely investigated, and both preclinical trials and a few clinical trials have provided proof of concept for the idea. An initial enthusiasm caused by positive results from early clinical trials has been dampened by the recognition of scientific irregularities. At the same time, the safety issue for cell-based therapy has been highlighted by the appearance of new and comprehensive regulatory demands. The influence on the cost effectiveness, the clinical relevance and the future perspectives of the present clinical approach are discussed.
    Acta Obstetricia Et Gynecologica Scandinavica 05/2011; 90(8):815-24. DOI:10.1111/j.1600-0412.2011.01184.x · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress urinary incontinence (SUI) is a prevailing health problem that severely impacts quality of life. Because SUI is mainly due to urethral sphincter deficiency, several preclinical and clinical trials have investigated whether transplantation of patient's own skeletal muscle-derived cells (SkMDCs) can restore the sphincter musculature. The specific cell type of SkMDCs has been described as myoblasts, satellite cells, muscle progenitor cells, or muscle-derived stem cells, and thus may vary from study to study. In more recent years, other stem cell (SC) types have also been tested, including those from the bone marrow, umbilical cord blood, and adipose tissue. These studies were mostly preclinical and utilized rat SUI models that were established predominantly by pudendal or sciatic nerve injury. Less frequently used animal models were sphincter injury and vaginal distension. While transurethral injection of SCs was employed almost exclusively in clinical trials, periurethral injection was used in all preclinical trials. Intravenous injection was also used in one preclinical study. Functional assessment of therapeutic efficacy in preclinical studies has relied almost exclusively on leak point pressure measurement. Histological assessment examined the sphincter muscle content, existence of transplanted SCs, and possible differentiation of these SCs. While all of these studies reported favorable functional and histological outcomes, there are questions about the validity of the animal model and claims of multilineage differentiation. In any event, SC transplantation appears to be a promising treatment for SUI.
    Stem cells and development 11/2011; 21(6):834-43. DOI:10.1089/scd.2011.0621 · 4.20 Impact Factor